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A behavioral approach to instability pathways
in financial markets
Alessandro Spelta1,2✉, Andrea Flori 3, Nicolò Pecora4, Sergey Buldyrev5 & Fabio Pammolli2,3

We introduce an indicator that aims to detect the emergence of market instabilities by

quantifying the intensity of self-organizing processes arising from stock returns’ co-

movements. In financial markets, phenomena like imitation, herding and positive feedbacks

characterize the emergence of endogenous instabilities, which can modify the qualitative and

quantitative behavior of the underlying system. The impossibility to formalize ex-ante the

dynamic laws that rule the evolution of financial systems motivates the use of a parsimonious

synthetic indicator to detect the disruption of an existing equilibrium configuration. Here we

show that the emergence of an interconnected sub-graph of stock returns co-movements

from a broader market index is a signal of an out-of-equilibrium transition of the underlying

system. To test the validity of our approach, we propose a model-free application that builds

on the identification of up and down market phases.

https://doi.org/10.1038/s41467-020-15356-z OPEN

1 Department of Economics and Management, University of Pavia, Via San Felice 7, 27100 Pavia, Italy. 2 CADS, Joint Center for Analysis, Decisions and
Society, Human Technopole, Milan, Italy. 3 Department of Management, Economics and Industrial Engineering, Politecnico di Milano, Via Lambruschini, 4/B,
20156 Milan, Italy. 4 Department of Economics and Social Sciences, Catholic University, Via Emilia Parmense 84, 29122 Piacenza, Italy. 5 Department of
Physics, Yeshiva University, 500 West 185th Street, Belfer Hall, New York City, NY, USA. ✉email: alessandro.spelta@unipv.it

NATURE COMMUNICATIONS |         (2020) 11:1707 | https://doi.org/10.1038/s41467-020-15356-z | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-15356-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-15356-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-15356-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-15356-z&domain=pdf
http://orcid.org/0000-0002-9861-3598
http://orcid.org/0000-0002-9861-3598
http://orcid.org/0000-0002-9861-3598
http://orcid.org/0000-0002-9861-3598
http://orcid.org/0000-0002-9861-3598
mailto:alessandro.spelta@unipv.it
www.nature.com/naturecommunications
www.nature.com/naturecommunications


This paper tackles the issue of detecting long-range memory
and co-movements across financial time series as infor-
mative signals of market instability and of upcoming

changes in the dynamic laws governing the evolution of the
system. A precise mathematical description of the underlying
system through dynamic equations is, in fact, not feasible during
the transition between equilibria. An in-depth inspection of the
system is thus instrumental to uncover how the evolving rela-
tionships between market participants induce distinguishable
variations in the set of financial variables, which may lead to
instability1–5.

Imitation, herding behaviors, and positive feedbacks among
market participants have been recognized as phenomena leading
to endogenous instabilities6,7. Herding behaviors spread when the
knowledge about other investors’ allocation decisions influences
personal strategies, meaning that investors tend to use similar
investment practices to those applied by other market participants
even when this is not justified by their own information set8–10,
while positive feedbacks can induce the underlying system to
accumulate instabilities that lead to new configurations as a self-
fulfilling mechanism11–14. Hence, a strengthening of interactions
among asset prices may emerge due to market euphoria, which
drives prices to a sharp rise or, by contrast, to phenomena of
financial turmoil, which induce fire sales and stock market crashes.

Several techniques have been applied in the literature to study
how cross-market linkages, co-movements, and interdependencies
between stocks contribute to influence the sustainability condi-
tions of financial markets and, possibly, the mechanisms behind
shock transmission15–19. Here, against this background, we focus
on the intensity of self-organizing processes arising from stock
returns’ co-movements and self-similarities.

Inspired by H.A. Simon’s near decomposability condition20 to
represent a stable system configuration21–23, we hypothesize that,
during instability phases, a sub-graph of stocks displays increas-
ing co-movements and self-similarity patterns, which we propose
to quantify by means of the Pearson’s correlation coefficient
(PCC) and the autocovariance (AC) of stock returns (see Sup-
plementary information, Section 3.1). We refer to this sub-graph
of stocks as the leading temporal module (LTM) of the system,
whose dynamics is anticipatory for the whole underlying system.
In particular, when the system is approaching a change in its
equilibrium configuration, we observe that the absolute value
of the average PCC is increasing within the set of stocks com-
posing the LTM sub-graph, but decreasing between stocks
belonging to the LTM and stocks outside the LTM group, while
the average AC of stocks within the LTM is increasing.

A rigorous investigation of the properties of the LTM, based on
its temporal and spatial dimensions, allows us to build a synthetic
and flexible indicator, which we use to detect the emergence of
significant changes in the underlying financial market. We pro-
pose a parsimonious aggregate indicator based on the mean
absolute value of the AC of the stocks belonging to the LTM
(<jACLTM

t j>) and on the ratio between the correlations of stocks
within the LTM (<jPCCLTM

t j>) and the correlations of stocks

outside the leading module (<jPCCfLTM
t j>). We relate the first

component to the existence of positive feedbacks in the
market24,25, while the second component reveals the presence of
herding behaviors among investors26,27. The corresponding
synthetic indicator is defined accordingly as:

ILTMt ¼ <jACLTM
t j><jPCCLTM

t j>
<jPCCfLTM

t j>
: ð1Þ

To identify those stocks that have a higher potential triggering,
before applying the LTM procedure, we use the detrended

fluctuation analysis (DFA)28–30 on the time series of the original
returns and on data obtained by independent time permutation.
We focus on stocks that show DFA exponents significantly dif-
ferent from 1/2, which is the expected value for a memoryless
signal. Hence, the LTM identification is performed within the set
of stocks for which the DFA indicates the presence of long-range
memory. For comparison purposes, we also verify the predictive
properties of both the set of stocks that have a statistically sig-
nificant DFA, but are not in the LTM sub-graph (namely, DFA−)
and the ones not selected by neither the DFA nor the LTM
procedures (indicated as Rest).

To mimic the possible system dynamics far and near a tran-
sition point, we also employ a Lotka–Volterra model of stocks
dynamics (see Supplementary information, Section 3.3). Specifi-
cally, we simulate the system with different values of the bifur-
cation parameter and then we compute the statistical components
of our proposed indicator. We note that while far from transition
the time series exhibit small correlations and relatively low ACs,
close to the bifurcation point the series exhibit both higher ACs
and stronger correlation values.

Finally, we implement an illustrative investment strategy that
builds on the identification of the emergence of up and down
market phases31,32 to show the functioning of our approach. Our
analysis thus contributes to the understanding of financial mar-
kets by studying how the effects of linkages at the micro-level turn
out to be relevant at the macro-level in the corresponding
aggregate system. In fact, at the micro-level investors interact
through heterogeneous allocation strategies, adapting their
behavior in response to the performance of their investments, the
arrival of new information, and the interplay of social interactions
and observations, which generate, at the macro-level, non-trivial
aggregate patterns of the corresponding financial system13,33–40.
Related to our work is, therefore, the approach of employing
community detection methodologies41–43 to understand the
properties of the dynamic processes taking place in a correlation
network, from which the detection of the LTM is inspired.

Moreover, we can establish a link between our approach and
what is observed in natural sciences, since variations in asset
prices can be seen as the social equivalent of nucleation phe-
nomena near the limit of stability in a thermodynamic system,
such as a superheated liquid or supercooled gas44. In our
approach, the LTM can be viewed as analogous to the nucleus of
the new phase for financial markets. We can say the indicator
ILTMt plays a role similar to compressibility in thermodynamic
systems, that is, the macroscopic thermodynamic quantity
referring to the increasing instability near the spinodal lines.

Results
The LTM indicator. We analyze the stocks referring to the
STOXX Asia/Pacific 600 Index, which is a broad and liquid subset
of the STOXX Global 1800 Index. We investigate the dynamics of
the aggregate index starting from the micro-level represented by
the stocks that approximately constitute it. We employ daily
closure prices along the period 2006–2017 to compute the cor-
responding returns at the ground of the analysis. During the
period of our analysis, the Asian stock market experienced
unstable dynamics, with large booms and bursts. These up and
down swings reflect the 2008 global financial crisis firstly, and,
more recently, the real estate bubble and the flood of debt by
municipal governments and local enterprises designed to fund
infrastructure investments45–48. We also provide additional evi-
dence on stocks constituting the STOXX North America 600
Index (see Supplementary information, Section 3.7).

The dynamics of the LTM sub-graph identifies market phases
characterized by the strengthening of price co-movements
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responsible for the transition of the whole underlying market
away from its current configuration. Upper panels of Fig. 1 show
the absolute values of both the correlation and the AC for the
LTM members and for the other stocks not included in the
LTM. Figure 1a refers to an unstable period (centered around
08-06-2009), while Fig. 1b refers to a stable phase (centered
around 21-04-2010). Figure 1c shows the schematic diagram of
the sets of stocks composing the system: the LTM group (labeled
as LTM), the stocks that have a statistically significant DFA, but

that are not in the LTM sub-graph (labeled as DFA−), and the
rest of the stocks not selected by neither the LTM algorithm nor
the DFA (labeled as Rest). Figure 1d shows the dynamics of the
underlying index (in gray), the pattern of ILTMt referring to the
LTM members (blue line) and the analogous indicators
computed on stocks belonging to the DFA− group (red line)
and on the Rest group (yellow line). Figure 1 shows how, during
unstable phases, the LTM emerges in the correlation matrix,
displaying also relatively high values of the ACs (Fig. 1a). On the
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Fig. 1 The leading temporal module (LTM) sub-graph in different market phases together with the indicator ILTMt reported against the market
dynamics. a, b show the absolute value of the correlation matrices (PCC) derived from stocks returns, emphasizing the LTM sub-graph with a red square,
together with the absolute average auto-covariance (AAC) computed on both its members and on the rest of the system. Correlation matrices and auto-
covariance are displayed for two different market phases, centered around 08-06-2009 in a and around 21-04-2010 in b, which stand for an unstable and
a business as usual phase, respectively. c illustrates the sets of stocks within the system: stocks composing the LTM, stocks that have a statistically
significant DFA but are not in the LTM sub-graph (DFA−), and the rest of the stocks not selected by neither the LTM algorithm nor the DFA (Rest).
d reports the leading indicator (right axis) computed on the LTM members (blue line), on DFA− members (red line), and on the Rest of the stocks (yellow
line). These indicators have been smoothed based on a Lowess (locally weighted scatter-plot smoothing) filter and compared with the dynamics of
the underlying reference index displayed in gray (left axis). Vertical bars correspond to crisis events affecting the financial market such as the banking
sector ratings downgrades of 2007, the failure of Lehman Brothers in September 2008, the American Recovery and Reinvestment Act of 2009, the
European Debt crisis of 2011, and the Chinese stock market crisis of 2015–2016. Error bounds are computed by performing 500 bootstrapping re-sampling
of stocks' returns from the empirical distribution of the observed data and computing for each run the LTM indicator. Shaded areas represent the 5–95%
confidence intervals. Two-sample Kolmogorov–Smirnov (KS) test provides evidence about the statistical difference between ILTM and the indicators
computed on DFA− and Rest. The pairwise KS statistics of ILTM vs. the indicators for DFA− and Rest are 0.95 and 0.99 at 1% significance level,
respectively, thus suggesting that they are from different continuous distributions. e–g show the dynamics of the components of the leading indicator; from
the left to the right: the absolute auto-covariance of stocks' returns (e), the within cluster absolute Pearson’s correlation (f) and the between clusters
absolute Pearson’s correlation (g). All computations are made using a moving window of 200 days.
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contrary, the module is indistinguishable from the remaining part
of the system during “business as usual” phases (Fig. 1b). In a
nutshell, ILTMt increases and assumes higher values around
periods of market instability than during a tranquil period. For
instance, during the 2008 global financial crisis, ILTMt starts to
increase prior to the outbreak of the market and it reaches a local
maximum approximately in correspondence of the onset of the
crisis. Figure 1d also points out that ILTMt shows an increasing
dynamics in correspondence of major events affecting the market,
such as the banking sector ratings downgrades of 2007, the failure
of Lehman Brothers in September 2008, the American Recovery
and Reinvestment Act of 2009, the European Debt crisis of 2011,
and the Chinese stock market crisis of 2015–2016. Moreover,
ILTMt shows a sharp increase also for transitions occurring during
positive market trends, as for instance in the recovery period after
the global financial crisis and at the end of the sample period. By
contrast, the dynamics of both DFA− and the Rest groups seem
less informative in distinguishing phases of instability in the
market as reported in Fig. 1d. Error bounds are computed by
performing 500 bootstraps re-sampling by randomly permuting
stocks’ returns. Every bootstrap sample allows acquiring an
estimate of ILTMt , which is used to compute the distribution of the
indicator and to estimate the error bound as the 5–95th
percentiles of such distribution.

Our analysis of the system at different points in time is able to
identify stages of accumulation of market instability by detecting
qualitative changes in the structure of the interactions among
market participants.

The dynamics of the LTM mimics some behavioral attitudes of
market participants, such as positive feedbacks and herding
behaviors that reverberate in the path of stock prices. The former
empirically translates into an increased AC of stock returns, while
the latter empirically drives an increase of the correlation of such
returns. The lower panels of Fig. 1 (panels e, f, and g) show the
time dynamics of the components of ILTMt as described by Eq. (1).
From the left to the right: the absolute AC of stocks’ returns
(panel e), the within-group absolute Pearson’s correlation (panel f),
and the between groups absolute Pearson’s correlation (panel g).
These components jointly contribute to detect the emergence of
phases of cumulative market instabilities. In particular, the AC
signals the presence of positive feedbacks around the outbreak

of the global financial crisis and of its rebound, while high
correlation values between the LTMmembers indicate the presence
of a bunch of stocks having strong synchronized patterns, which
deviate from the behavior of the rest of the system. Notice that
when these components are evaluated separately, they do not
provide a clear interpretation of market conditions, while only once
jointly considered they convey a meaningful signal.

ILTMt is a dynamic indicator whose members may vary in time.
Changes in the LTM composition are important to identify the
drivers of the upcoming period of instability. In order to
investigate the composition of the LTM sub-graph, its size and
the entry–exit dynamics of the stocks in the module, we report, in
Fig. 2a, the stability coefficient of the LTM computed as the
portion of stocks that belong to the module during two
consecutive days (green line). We also report the size of the
LTM (in red) and that of the group DFA− (in blue), expressed as
percentages to the total number of stocks composing the
reference index. In the lower part of Fig. 2a, we also report the
correlation between the number of stocks selected by the DFA
procedure and the average correlation of these stocks’ returns.
This helps us to verify whether a rise in the number of stocks with
a significant DFA exponent is related to the growth of the average
correlation of the returns associated with these stocks, and thus to
a higher likelihood of being LTM members. When most of the
stocks with a significant DFA exponent belong to the LTM
(see red line), we observe a stable dynamics of the leading module
(see green line) or, to put it differently, a low turnover of the
stocks inside the LTM. On the contrary, the LTM stability
drastically decreases when there exists a considerable amount of
stocks with a significant DFA exponent that are not part of the
leading module (see blue line). Indeed, we observe positive and
high values of the correlation when most of the stocks selected by
the DFA also belong to the LTM as, for instance, during the 2008
global financial crises and during the last semester of 2015, after
the Renmimbi devaluation, while low values of the correlation are
associated with periods of substantial changes of the LTM
members. The negative Pearson’s correlation (−0.19) between the
LTM stability coefficient and the size of the subset of stocks
composing the DFA− group (i.e., not included in the leading
module) indicates that new leading modules are likely to emerge
in those periods in which there are stocks with significant DFA
exponents but with poorly correlated returns. In the Section 3.4 of
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those with only one stock belonging to such interval (in red).
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the Supplementary information, we also report that, on average,
stocks stay continuously in the leading module for about
1.5 months. Figure 2b shows the distributions of the correlations
between pairs of stocks such that both stocks have Hurst
exponent outside the interval 0.2–0.8 (in black) in comparison
with the pairs such that none of them is outside that interval (in
green) or such that only one of the stock in the pair belongs to
that interval (in red). The shifting to the right of the distribution
for the stocks with Hurst exponent outside the interval
0.2–0.8 suggests that the DFA selects assets with high correlated
returns. In other words, an increase of the number of stocks with
a significant DFA exponent implies an increase of the average
correlation of the returns associated with these stocks and
subsequently to a higher probability of entering the LTM.

The predictive performance. We assess the predictive perfor-
mance of ILTMt by testing an investment strategy that consists of
two steps: first, the detection of a cumulative process leading to a
phase of instability and, second, the identification of the market
direction. As for the first point, a thresholding approach for
extracting signals from ILTMt appears not suitable, since it would
require the prior knowledge of the out-of-sample distribution.
Therefore, the most recent value of the indicator is compared
against its empirical distribution computed over the previous
three trading weeks (15 working days). If this value belongs to the
right tail of the distribution, then the LTM is interpreted as sig-
naling a cumulative process leading to market instability. Instead,
to detect the direction of the market trend, we exploit the most
recent returns of the LTM members, averaging among such
values at the day corresponding to the investment decision. If the
average value of the returns is positive, then the signal conveyed
by the LTM indicates the arrival of a shift towards a bullish
equilibrium; otherwise, it stands for a declining and bearish

market dynamics. In other words, whenever ILTMt falls in the right
tail of its empirical distribution, a switch between a long or short
(or vice versa) investment position is possible depending on the
average returns of the LTM members. More specifically, we refer
to values of the ILTMt larger than the 95th percentile of its
empirical distribution as the trigger for switching the investment
exposure: if the average return of the stocks composing the LTM
sub-graph is positive at time t, then we opt for a buy signal in that
day; otherwise, the strategy goes short.

Figure 3a reports the behavior of the underlying market index
in which price forecasts are emphasized by green (i.e., buy) and
red (i.e., sell) colors. Notice how, when there is a declining
dynamics of the market index, our strategy mostly signals a short
position, while in ascending price phases the green color prevails,
indicating a long portfolio exposure. In particular, prior to the
global financial of 2008, the indicator is able to correctly
anticipate the price downturn, while at the onset of the crisis
the wave of financial turbulence prevents a clear market trend
detection. However, the subsequent rebound is timely identified.
Figure 3a also shows the Profit and Loss (P&L) of the strategy
based on ILTMt (in blue) to disentangle the phases in which up-
down movements allow to obtain positive portfolio performances.
In fact, the proposed strategy is able to generate a positive
cumulative performance along the sample period. In Fig. 3a, we
also compare the P&L of an investment strategy based on a well-
known measure of risk such as the value at risk (VaR)49,50, which
estimates the maximum amount of expected loss over a specified
time horizon at a given confidence level (see Supplementary
information, Section 3.5). High values of VaR, that is, values
higher than the 95th percentile of its empirical distribution,
suggest a phase of instability, and, accordingly, the strategy takes
a short position; otherwise, it goes long. Notice how, while ILTM

recognizes changes in market trajectories in a timely way, the
investment strategy based on VaR (in black), on the other hand, is
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Fig. 3 The buy/sell signals provided by the dynamics of ILTMt and of its members’ returns together with the obtained Profits and Losses (P&L). The
figure reports, in a, the forecast dynamics of the benchmark index (green-red colors stand for buy and sell signals, respectively) together with the P&L of
the investment strategy based on ILTMt (blue line). The P&L of an investment strategy based on the value at risk (VaR), that is, the maximum potential loss
computed on a daily time horizon with an interval of confidence of 0.975 is also reported (black line) as a comparative measure. The true positives, false
positives, false negatives, and true negatives obtained by investing following ILTMt are 53%, 47%, 49%, and 51%, respectively, while for the strategy based
on the VaR, we obtain 49%, 51%, 52%, and 48%. Finally, the brown line refers to the P&L evolution obtained by considering an investment strategy based
on the indicator proposed by ref. 58, while the cyan line shows the P&L obtained when considering only the average correlation among stocks' returns. In b,
we report the accuracy and precision measures of the proposed investment strategy conditionally on the forecast of the market index returns larger than a
certain percentile of their distribution in absolute terms.
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much less reactive as it can be seen; for instance, after the market
rebound of the second half of 2009 and in the first part of 2016.
Finally, lower performances with respect to our proposed
indicator clearly emerge if we observe the P&L obtained by
applying a strategy relying on the indicator introduced by ref. 49

(in brown) and the P&L derived from a strategy based only on the
average correlation of stocks’ returns (in cyan). All in all, this
suggests that the behavioral features of market participants that
we propose to capture through the use of the AC and correlation
values are together instrumental for anticipating the dynamics of
the underlying financial system.

We also report in Table 1 the annual P&L achieved by
following either our proposed investment strategy or a simply
Buy&Hold strategy (last row). We investigate the robustness of
our findings to changes in the length of the moving window
adopted to compute the empirical distribution of ILTMt and in the
threshold employed to define the extreme values for this
indicator. We observe that our strategy over-performs the simple
Buy&Hold strategy over the entire sample period (last column).
Beside the fact that the proposed investment strategy does not
produce positive P&L for all the periods and for all parameters
configurations, results in Table 1 still support the predictive
performance of our approach. While during market up-trends the
signal produces P&L in lines with the Buy&Hold strategy, the
timely identification of downward phases limits severe losses that,
on the contrary, impact on the naive Buy&Hold strategy (see also
Supplementary information, Section 3.6).

To quantitatively assess the performance of the proposed
investment strategy, we employ a non-parametric approach. We
proceed by first computing the true-positive, true-negative, false-
positive, and false-negative calls of our investment strategy
conditionally on some pre-determined percentiles of the
distribution of the absolute values of the market returns. We
consider returns larger than an α percentile, with α varying from
10% to 90%. Then, we compute the associated precision and

accuracy measures for each percentile (see Supplementary
information, Section 3.8). From Fig. 3b, it clearly emerges that
the capability of the proposed investment strategy in discriminat-
ing between positive and negative market movements increases as
long as we select larger absolute values of market returns. This
means that the trading strategy based on the LTM indicator
correctly anticipates future changes in the aggregate stock price
indices, especially around large market movement.

Finally, in the Section 3.6 of the Supplementary information,
the P&L obtained from this strategy is compared against other
investment alternatives such as strategies based on the DFA
signals alone. We show that our approach outperforms the other
strategies even when we do consider transaction costs. In fact, by
assuming transaction costs of 10 basis-points for each portfolio
rebalance, we still get a positive P&L of about 5.5% per year.

Discussion
In a highly interconnected financial system, it is of paramount
relevance to detect the emergence of an abrupt transition from a
stable configuration to a state of instability20,52–55. It is against
this background that our results are derived in the context of a
financial market in which we investigate how the effects of lin-
kages at the micro-level may bring changes to the macro-
system39. The level of connectivity influences the probability of
the system to remain stable. However, the role played by con-
nectivity depends also on how the structure of the network
interacts with additional factors which are specific for financial
markets, such as investors heterogeneity, incentives to misbehave
and price changes.

In this work, we have introduced an indicator that aims at
detecting the emergence of instabilities in financial markets. The
absence of a unified quantitative framework to properly formalize
the laws of motion of financial markets motivates the use of
instruments derived from the network theory to detect the
emergence of discontinuities and their temporal evolution.

Table 1 Profits and Losses (P&L) performances.

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2006–17

MV= 10;
PRCTILE= 90

3.15 −12.80 7.90 11.96 11.64 −2.04 2.48 2.96 3.78 19.78 2.50 4.76 56.05

MV= 10;
PRCTILE= 95

2.27 6.42 −8.48 20.26 3.76 −7.51 19.82 15.40 1.32 29.54 25.48 6.16 114.44

MV= 10;
PRCTILE= 98

2.27 6.42 −8.48 20.26 3.76 −7.51 19.82 15.40 1.32 29.54 25.48 6.16 114.44

MV= 15;
PRCTILE= 90

6.86 −16.37 24.59 14.00 25.96 −3.23 11.21 −17.76 −6.19 19.22 25.85 −0.63 83.51

MV= 15;
PRCTILE= 95

−6.18 10.18 4.04 17.42 23.18 3.08 12.40 −9.82 0.78 30.75 31.05 6.16 123.04

MV= 15;
PRCTILE= 98

−1.94 10.18 4.04 17.42 0.00 −0.92 18.13 −6.58 0.27 30.75 25.67 6.16 103.18

MV= 20;
PRCTILE= 90

8.62 −0.27 −0.39 19.01 25.34 −3.99 −4.03 −3.76 −11.80 19.35 16.89 0.43 65.39

MV= 20;
PRCTILE= 95

3.54 7.26 18.99 41.03 19.21 −0.92 10.60 −16.14 −21.74 18.56 25.10 4.76 110.25

MV= 20;
PRCTILE= 98

2.69 13.57 2.61 43.15 −1.83 −4.60 20.25 −7.21 −22.25 28.73 25.10 6.16 106.38

MV= 25;
PRCTILE= 90

12.79 −3.50 14.23 13.44 21.30 6.74 −20.85 −3.52 −15.07 19.81 12.38 −2.12 55.63

MV= 25;
PRCTILE= 95

8.94 9.23 7.07 30.87 17.87 −3.47 −9.95 −21.56 −17.47 33.01 20.57 −0.63 74.49

MV= 25;
PRCTILE= 98

4.97 13.57 −11.09 38.22 −4.14 −2.87 6.73 −10.08 −13.73 20.21 23.28 6.16 71.24

Buy&Hold −5.67 −5.95 −42.25 15.24 18.83 −13.83 9.09 9.58 8.24 12.42 4.62 3.11 13.42

The table shows the P&L per year obtained by following either ILTMt or the Buy and Hold strategy. Rows also indicate the sensitivity of the investment strategy to different values of the moving window
(MV) and of the threshold of the empirical distribution (PRCTILE) used to identify phases of unstable market co-movements. Last column represents the P&L over the entire sample.
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Changes in the market conditions are inspected through the
analysis of the underlying system at different points in time.
Phases of market instability are then assessed by the changes in
the structure of the interactions among stock returns.

In particular, we have identified phases of accumulation of
instability by detecting the emergence of a sub-graph of stocks
characterized by both high cohesiveness among its members and
long-range memory, which we relate to herding behaviors and
positive feedbacks. We summarize the dynamic of this sub-graph
through a synthetic indicator which we show to be able to detect
temporary transitions of the underlying system. To test this
approach, we have also proposed illustrative investment strategies
to identify the emergence of up and down market phases
according to the signals provided by the indicator. Our results
show that this methodology can timely recognize phases of
increasing instability that are likely to drive the underlying system
into a new market configuration.

Methods
Detrended fluctuation analysis. DFA28–30 is employed in the first step of the
analysis to filter stocks presenting long-term memory. The returns of these stocks
are then clusterized according to their correlation values in order to identify the
module approaching the phase transition towards a new equilibrium.

The DFA method comprises the following steps. In the first step, the data series
y(k), consisting in the stocks returns, is shifted by its mean <y> and integrated
(i.e., cumulatively summed) as follows:

xðkÞ ¼
Xk
i¼1

½yðiÞ � <y>�: ð2Þ

In the second step, the transformed series is segmented in windows of various
length Δl. For each segmentation, and repeatedly for all values of Δl, the summed
data are fit with a polynomial xΔl(k). By this, the mean squared residual is found as:

FðΔlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L

XL
k¼1

½xðkÞ � xΔlðkÞ�2
vuut ; ð3Þ

where L is the total number of data points. In our analysis, we have applied a linear
fit with L set to 200 days. It is worth to remark that F(Δl) can be viewed as the
average of the summed squares of the residual computed in the windows.

Finally, a log–log graph of F(Δl) against Δl is drawn. This relationship is
expected to be linear if power law scaling is present. In other words, a straight line
on this log–log graph indicates statistical self-affinity expressed as F(Δl) ∝ (Δl)α.
The scaling exponent α is calculated as the slope of a straight line fit to the log–log
graph of Δl against F(Δl) using least squares. This scaling parameter is a measure of
the presence of self-similarity and, therefore, of long-term memory in the signal, as
it tracks down the scaling of dispersion around a regressor for increasing window
sizes. In particular, the value of α can describe the following signal behaviors: if
0 < α < 0.5, then the signal has long-term memory and it is anti-correlated; if
0.5 < α < 1, the signal has long-term memory and it is correlated; if α = 0.5, the
signal is uncorrelated (has no memory); finally, if 1 < α < 2, the signal is non-
stationary.

The fluctuation function has a relationship with the AC of stationary process56.
Indeed, the square of the fluctuation function F(Δl) can be written as a function of
the autocorrelation as:

F2ðΔlÞ ¼ <y2>ðWðΔlÞ þ
XΔl�1

b¼1

ACoðbÞLbðΔlÞÞ ð4Þ

being ACo(b) the autocorrelation function. Thus, in terms of AC, for a linear
detrending, it is straightforward to compute W(Δl) and Lb(Δl), as:

WðΔlÞ ¼ Δl2 � 4
15Δl

; ð5Þ

LbðΔlÞ ¼
1

15ðΔl4 � Δl2Þ ð�Δl þ 15Δl2 þ 20Δl3 þ 15Δl4þ 25Δl5Þ: ð6Þ
The fluctuation function of DFA is therefore fully determined by the AC(1) and

by the variance V(1) of the process. For a long-range correlated process, these
components are dominant on all time windows and hence a single scaling range
with the correct exponent exists.

Our study starts by assessing the significance of the DFA coefficients
considering the results computed from the original data and from surrogate data,
namely, data obtained by independent time permutation for each stock returns. In
other words, for a given time series we obtain its randomized (shuffled)
counterpart by randomly rearranging time stamps attributed to each element in the
series.

By comparing original results to those obtained for randomized data, we are
able to wash out stocks that presents DFA coefficients in line with the one observed
from the shuffled case. Basically, we identify the 5–95th percentiles of the DFA
coefficients distribution as reference thresholds for assessing the statistical
significance of the DFA value. Stocks with extreme values of the DFA, that is,
stocks with DFA coefficients belonging to the tails of the distribution, will be then
clusterized to obtain an indicator of price co-movement whose dynamics will be
used to identify the occurrence of market instabilities and, accordingly, to
distinguish between upward and downward market phases.

The leading temporal module. In what follows, we describe the methodology that
allows us to identify a general signal indicating an imminent bifurcation. This
signal is associated with the presence of an LTM, whose statistical properties reflect
a transition of the underlying system to another state. In particular, it can be shown
that, when a system is undergoing a bifurcation, the following general temporal and
spatial properties hold: a group of stocks displays an average within PCC that
drastically increases in absolute value; the average between PCC of stocks in this
group and other stocks in the rest of the system will greatly decrease in absolute
value; the average AC of stocks belonging to this group increases in absolute value.
If all the three above-mentioned conditions are simultaneously satisfied, we call the
group of stocks fulfilling these requirements the LTM of the system51,57,58.

We now sketch the theoretical background at the basis of our indicator of
market instability. Assume that the following discrete-time dynamical system
describes the law of motion of a financial market, for example, in terms of stock
prices or returns:

Z t þ 1ð Þ ¼ f Z tð Þ;Pð Þ þ εðtÞ; ð7Þ
where Z tð Þ ¼ z1 tð Þ; :::; zn tð Þð Þ is a n-dimensional state vector representing stocks
returns, P ¼ p1; :::; ps

� �
is an s-dimensional parameter vector representing slowly

changing factors (e.g., news on earnings or profits, anticipated takeovers or
mergers, etc.) and ε ¼ ε1; :::; εnð Þ is a n-dimensional stochastic component with εi
Gaussian white noise with zero means and covariances κij ¼ Covðεi; εjÞ. In general,
we assume f : Rn ´Rs ! Rn is a nonlinear vector-valued function. In order to apply
theoretical results on bifurcations of a general discrete-time dynamical model, we
consider only the deterministic skeleton of the system, that is, we set ε(t) = 0.
Furthermore, let us assume that the following conditions for Eq. (7) hold: �Z is a
fixed point of (7), that is �Z ¼ f �Z;Pð Þ; there exists a value Pc such that one or a
complex conjugate pair of the eigenvalues of the Jacobian matrix of Eq. (7)
evaluated at the fixed point �Z is equal to 1 in modulus; when P ≠ Pc the eigenvalues
of the Jacobian matrix of (7) are generally not 1 in modulus.

These conditions, along with other transversality conditions, imply that the
system undergoes a transition at �Z or a codimension-one bifurcation59. The
parameter Pc, at which the transition for the equilibrium value �Z occurs, is called a
bifurcation value (or a critical transition value) where a sudden qualitative or
topological change takes place. The bifurcation is generic from a mathematical
viewpoint, that is, almost all bifurcations for a general system satisfy these
conditions. Around the fixed point �Z, it is possible to linearize the system described
by Eq. (7) as:

Z t þ 1ð Þ ’ JðZ tð Þ � �ZÞ; ð8Þ
where J ¼ J Pð Þ denotes the Jacobian matrix of (7). By defining X ¼ Z� �Z, it
is possible to shift the fixed point to the origin, and the system characterized by
Eq. (8) can be re-written as:

X t þ 1ð Þ ¼ JX tð Þ; ð9Þ
where J is a full-rank matrix that also depends on the vector P. Since the Jacobian
matrix J is of full rank, then there exists a full-rank matrix S satisfying:

J ¼ SΛS�1: ð10Þ
By defining Y = S−1X, and reintroducing the stochastic component ε, the

linearized version of the original system can be re-written as:

Y t þ Δtð Þ ’ ΛY tð Þ þ ε tð Þ: ð11Þ
By fixing the value of parameter P before reaching Pc, either J or Λ is a constant
matrix of full rank and we may end up with three cases: real and distinct
eigenvalues, real and coincident eigenvalues, and complex eigenvalues.

If the sum of the dimensions of the eigenspaces with real eigenvalues is n, then
there exists a non-singular matrix S satisfying Λ ¼ S�1JS ¼ diag λ1; :::; λnð Þ being
λi the ith eigenvalue of the system (11). Without loss of generality, we may regard
the first element λ1j j as being the nearest to 1, that is, the dominant eigenvalue,
whose change leads to the state shift. If matrix J does not have linearly independent
eigenvectors, there exists a non-singular matrix Smaking Λ block diagonal. We can
always move the block with the largest eigenvalue in modulus, which is also the
nearest to 1, to the first entry of Λ. Finally, in the case of complex eigenvalues there
is a non-singular matrix S making Λ block diagonal where each two-dimensional
block matrix has a pair of complex conjugated eigenvalues whose moduli are <1. As
before we move the block in which the eigenvalues have the largest modulus to the
first entry of Λ. Therefore, irrespective of which case occurs, the first element of Λ
is the dominant eigenvalue, that is, the one nearest to 1 in modulus, whose change
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actually leads to the state shift from the fixed point. Furthermore, all the
eigenvalues (or their moduli) of matrix Λ are within [0, 1) and there is at least one
dominant eigenvalue approaching 1 in modulus when P → Pc.

For simplicity, we shall show the statistical properties of the original variables Z
considering only the case of real and distinct eigenvalues, but the same conclusion
applies for the other two cases in a similar manner58.

Since Λ is a full diagonal matrix, we have the variance V( ⋅ ), the covariance C
( ⋅ ), the auto-covariance AC( ⋅ ), and the Pearson correlation coefficient PCC( ⋅ ) of
the autoregressive process expressed in Eq. (11) read as:

V yiðtÞ
� � ¼ κii

1� λ2i
; ð12Þ

CðyiðtÞ; yjðtÞÞ ¼
κij

1� λiλj
; ð13Þ

AC yiðtÞ; yiðt � 1Þ� � ¼ λiκii
1� λ2i

; ð14Þ

PCCðyiðtÞ; yjðtÞÞ ¼
κijffiffiffiffiffiffiffiffiffiκiiκjj

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� λ2i
� �

1� λ2j

� �r
1� λiλj

:
ð15Þ

The dynamics of the original variable can be written as:

zi tð Þ ¼ si1y1 tð Þ þ � � � þ sinyn tð Þ þ �zi; zj tð Þ ¼ sj1y1 tð Þ þ � � � þ sjnyn tð Þ þ �zj: ð16Þ

Thus, the variance and covariance of the original variables are given by:

V ziðtÞð Þ ¼ s2i1V y1ðtÞ
� �þXn

k¼2

s2ikV ykðtÞ
� �

þ
Xn

k;m¼1;k≠m

siksimPCC ykðtÞ; ymðtÞ
� �

;

ð17Þ

CðziðtÞ; zjðtÞÞ ¼ si1sj1C y1ðtÞ
� �þ � � � þ sinsjnC ynðtÞ

� �
þ

Xn
k;m¼1;k≠m

siksimPCC ykðtÞ; ymðtÞ
� �

:
ð18Þ

The correlation is given by:

PCCðziðtÞ; zjðtÞÞ ¼
CðziðtÞ; zjðtÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ziðtÞð ÞVðzjðtÞÞ

q ; ð19Þ

while the auto-covariance reads as:

AC ziðtÞ; ziðt � 1Þð Þ ¼ s2i1λ1V y1ðtÞ
� �þXn

k¼2

s2ikλkV ykðtÞ
� �

þ
Xn

k;m¼1;k≠m

siksimðλk þ λmÞPCC ykðtÞ; ymðtÞ
� �

:

ð20Þ

Equations (19) and (20) relate the empirical signals of the original system (7)
with the value assumed by the dominant eigenvalue of the latent system (11). It is
worth to note that an increase of the variance, covariance, and autocorrelation of
the original system could be due to both a proximity of a tipping point or a strong
and unexpected exogenous shock in the stochastic component of the autoregressive
process in (11).

The temporal and spatial statistical properties that signal an imminent
bifurcation can thus be summarized as follows: if a variable zi is related to y1, that
is, si1 ≠ 0, then the absolute value of the auto-covariance AC(zi(t), zi(t − 1))
increases greatly as λ1 → 1; otherwise, it is bounded; if variables zi and zj are related
to y1, that is, si1 ≠ 0, sj1 ≠ 0, then jPCCðziðtÞ; zjðtÞÞj ! 1 as λ1 → 1; if variables zi
and zj are not related to y1, that is, si1 = 0, sj1 = 0, then jPCCðziðtÞ; zjðtÞÞj ! a with
a 2 0; 1ð Þ as λ1 → 1; if only variable zi is related to y1 but zj is not, that is,
si1 ≠ 0, sj1 = 0, then jPCCðziðtÞ; zjðtÞÞj ! 0 as λ1 → 1.

LTM identification. Stocks zi in the system are represented as a dynamical tem-
poral graph Gt = (Nt, Et) composed by Nt nodes, while edges Et denote the pairwise
correlation (PCC(zi(t), zj(t))) between each pair of stocks’ returns (zi(t), zj(t))
computed over a given moving window. This approach relies on the identification
of two main sets of stocks: (i) the LTM denoted as NLTM

t and (ii) the remaining
stocks NtnNLTM

t not belonging to the leading module. To detect whether the
system is approaching a new equilibrium, we expect that58,59: (i) the absolute value
of the auto-covariance of the time series of the LTM members in NLTM

t increases;
(ii) the absolute value of the correlation between stocks in the LTM increases as
well; (iii) conversely, the absolute value of the correlation between a stock in NLTM

t
and another stock outside the LTM decreases to zero.

More practically, to identify the LTM we apply a hierarchical clustering
procedure that distinguishes different groups or modules of stocks. We characterize

each identified module H by summarizing the statistical features reported above
through a synthetic indicator. Let us denote the mean of the absolute value of the
auto-covariance of the nodes in NH

t as <jACH
t j>, the mean of the absolute value of

the correlation coefficients between members of the H-th module as <jPCCH
t j>,

and let <jPCCeHt j> be the analogous between stocks in NH
t and the remaining

stocks. The corresponding synthetic indicator for stocks within each module is
defined accordingly as:

IHt ¼ <jACH
t j><jPCCH

t j>
<jPCCeHt j> : ð21Þ

Then, the module with the highest value of IHt is assumed as the LTM of the
underlying system and the corresponding indicator, labeled ILTMt , is employed for
monitoring the reinforcement of market instabilities. This indicator is expected to
sharply increase when a new phase is about to be reached by the underlying system,
representing therefore an effective marker for the identification of a cumulative
process leading to a new system configuration51,58,60. Hence, we expect the LTM to
emerge more clearly when the system is experiencing a transition, meaning that its
members become more cohesive and distinct from the rest of the network. In
Supplementary information we present a pseudo-code that formalizes the
procedure (see Supplementary Fig. 6).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
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