Alessandro Vannini
- Head of Structural Biology Research Centre, Structural biology
- Research Group Leader, Vannini Group
Alessandro Vannini is a biochemist. He heads the Centre for Structural Biology after almost 8 years as a Principal Investigator and Deputy Head of Division at the Institute of Cancer Research in London.
His laboratory focuses on structural and functional analisys of large macromolecular complexes assembling around RNA Pol III loci and that play a role in gene expression and structural organization of the eukaryotic genome. These mechanisms are often deregulated in human diseases, such as cancer and congenital neurodegenerative diseases.
Contacts
Follow on
Publications
-
11/2019 - Molecular Cell
TFIIIC Binding to Alu Elements Controls Gene Expression via Chromatin Looping and Histone Acetylation
How repetitive elements, epigenetic modifications, and architectural proteins interact ensuring proper genome expression remains poorly understood. Here, we report regulatory mechanisms unveiling a central role of Alu elements (AEs) and RNA polymerase III transcription factor C (TFIIIC) in structurally and functionally modulating the genome via chromatin looping and histone acetylation. Upon serum deprivation, a subset […]
-
04/2018 - Biochim Biophys Acta Gene Regul Mech
Structural rearrangements of the RNA polymerase III machinery during tRNA transcription initiation
RNA polymerase III catalyses the synthesis of tRNAs in eukaryotic organisms. Through combined biochemical and structural characterisation, multiple auxiliary factors have been identified alongside RNA Polymerase III as critical in both facilitating and regulating transcription. Together, this machinery forms dynamic multi-protein complexes at tRNA genes which are required for polymerase recruitment, DNA opening and initiation […]
-
01/2018 - Nature
Structural basis of RNA polymerase III transcription initiation
RNA polymerase (Pol) III transcribes essential non-coding RNAs, including the entire pool of transfer RNAs, the 5S ribosomal RNA and the U6 spliceosomal RNA, and is often deregulated in cancer cells. The initiation of gene transcription by Pol III requires the activity of the transcription factor TFIIIB to form a transcriptionally active Pol III preinitiation […]
-
08/2017 - Transcription
New tricks for an old dog: Brf2-dependent RNA Polymerase III transcription in oxidative stress and cancer
Here, we discuss the role of Brf2, an RNA Polymerase III core transcription factor, as a master switch of the oxidative stress response. We highlight the interplay of Brf2 with the Nrf2/Keap1 pathway, as well as the role of Brf2 in cancer and other possible regulations.
-
08/2017 - EMBO J
RNA polymerase I, bending the rules?
Transcription initiation is one of the key regulatory steps in expressing the genetic information encoded in the DNA. Mechanisms of RNA Pol II transcription have been extensively studied, whereas the structural basis of RNA Pol I and III transcription is still poorly defined. Three recent studies discussed here give a first glimpse into the molecular mechanisms underlying the process of RNA Pol I transcriptional initiation and […]