Francesco Iorio

Francesco Iorio is a computer scientist, currently Group Leader at HT’s Computational Biology Research Centre and team leader at the Wellcome Sanger Institute in Hixton (UK). He works on analytical methods for pharmacogenomics, therapeutic target discovery, drug repositioning and biomedical big-data mining, with a specific focus on cancer, rare diseases and neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. Francesco is building up his group and research activity, dividing his time between Milan and Cambdrige.

Follow on

  • Twitter

Publications

  • 11/2021 - BMC Genomics

    CoRe: a robustly benchmarked R package for identifying core-fitness genes in genome-wide pooled CRISPR-Cas9 screens

    Background CRISPR-Cas9 genome-wide screens are being increasingly performed, allowing systematic explorations of cancer dependencies at unprecedented accuracy and scale. One of the major computational challenges when analysing data derived from such screens is to identify genes that are essential for cell survival invariantly across tissues, conditions, and genomic-contexts (core-fitness genes), and to distinguish them from […]

  • 09/2021 - Clinical Cancer Research

    Functional impact of genomic complexity on the transcriptome of Multiple Myeloma

    Purpose: Multiple Myeloma (MM) is a biologically heterogenous plasma-cell disorder. In this study we aimed at dissecting the functional impact on transcriptome of gene mutations, copy-number abnormalities (CNAs), and chromosomal rearrangements (CRs). Moreover, we applied a geno-transcriptomic approach to identify specific biomarkers for personalized treatments. Methods: We analyzed 514 newly-diagnosed patients from the IA12 release […]

  • 03/2021 - Nature Communications

    Integrated cross-study datasets of genetic dependencies in cancer

    CRISPR-Cas9 viability screens are increasingly performed at a genome-wide scale across large panels of cell lines to identify new therapeutic targets for precision cancer therapy. Integrating the datasets resulting from these studies is necessary to adequately represent the heterogeneity of human cancers and to assemble a comprehensive map of cancer genetic vulnerabilities. Here, we integrated […]

  • 02/2021 - Nature Communications

    Combinatorial CRISPR screen identifies fitness effects of gene paralogues

    Genetic redundancy has evolved as a way for human cells to survive the loss of genes that are single copy and essential in other organisms, but also allows tumours to survive despite having highly rearranged genomes. In this study we CRISPR screen 1191 gene pairs, including paralogues and known and predicted synthetic lethal interactions to […]

  • 01/2021 - Nature

    Cancer research needs a better map

    It is time to move beyond tumour sequencing data to identify vulnerabilities in cancers.