Gaia Pigino

Gaia Pigino

Gaia Pigino is a biologist, currently Associate Head of the Structural Biology Center at Human Technopole, after 9 years as Research Group Leader at the Max Planck Institute CBG in Dresden. She collaborate with Alessandro Vannini to develop the Centre for Structural Biology. Gaia’s laboratory studies molecular mechanisms and principles of self-organisation in cilia and other subcellular structures that are of fundamental importance for human health and disease.

CURRENT POSITION

Since 2021 Associate Head of the Structural Biology Center at Human Technopole, Milan, Italy
Since 2012 Research Group Leader at MPI-CBG, the Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany

POSTDOCTORAL RESEARCH

2010-2012 Postdoctoral EMBO Long Term fellow Laboratory of Biomolecular Research (BMR), Department of Biology and Chemistry, Paul Scherer Institute (PSI) Switzerland. Supervisor: Prof. T. Ishikawa.
2009-2011 Postdoctoral researcher Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland. Supervisor: Prof. T. Ishikawa.
2007-2009 Postdoctoral MIUR research fellow Fellowship of the “Ministero Italiano dell’Istruzione, dell’Università e della Ricerca”. Laboratory of Cryotechniques for Electron Microscopy, Department of Evolutionary Biology, University of Siena. Supervisor: Prof. P. Lupetti.
2009 Participant at the Physiology Course at MBL in Woods Hole Marine Biological Laboratory, Woods Hole. Directors: Dyche Mullins and Claire Waterman.

EDUCATION

2003-2007 Ph.D. Student (Ph.D. Fellowship by the Italian government “Ministero Italiano dell’Istruzione, dell’Università e della Ricerca”). Department of Evolutionary Biology, University of Siena. Supervisor: Prof. F. Bernini and Prof. C. Leonzio.
2002 Diploma in Natural Science (Summa cum laude). University of Siena, Italy. Thesis supervisors: Prof. C. Leonzio and Prof. F. Bernini.

OTHER POSITIONS

2003 Research Associate. Department of Environmental Sciences G. Sarfatti, University of Siena. Advisor: Prof. C. Leonzio

AWARDS and FUNDING

2022 EMBO Member
2019 DFG Grant – GAČR-DFG Cooperation
2018 PoL starting fellowship (from the Dresden Excellence Cluster ‘Physics of Life’)
2018 Keith R. Porter Fellow Award for Cell Biology
2018 ERC Consolidator Grant (ERC-2018-COG N#819826 CiliaTubulinCode)
2018 Excellence Cluster ‘Physics of Life’, as a core Principal Investigator
2010 EMBO Long Term fellowship
2009 Scholarship from the Marine Biological Laboratory (Woods Hole, Massachusetts) MBL Physiology Course.
2007 Post-Doctoral Research fellowship from MIUR.
2003 Ph.D. Fellowship from MIUR.

Fellowship to students and postdocs

2022 EMBO Long Term Fellowship to Helen Foster
2021 EMBO Postdoc Fellowship to Nikolai Klena
2019 HFSP Postdoc Fellowship to Adrian Nievergelt
2018 EMBO Long Term Fellowship to Adrian Nievergelt
2017 Marie Curie Fellowship to Adam Schröfel (H2020-MSCA-IF-2016)
2015 DIGS-BB Fellowship to Guendalina Marini
2012 DIGS-BB Fellowship to Ludek Stepanek

Google Scholar

Follow on

  • Twitter

Publications

  • 08/2021 - Journal of Cell Science

    In vivo imaging shows continued association of several IFT A, B and dynein complexes while IFT trains U-turn at the tip

    Flagellar assembly depends on intraflagellar transport (IFT), a bidirectional motility of protein carriers, the IFT trains. The trains are periodic assemblies of IFT-A and IFT-B subcomplexes and the motors kinesin-2 and IFT dynein. At the tip, anterograde trains are remodeled for retrograde IFT, a process that in Chlamydomonas involves kinesin-2 release and train fragmentation. However, […]

  • 06/2021 - Journal of Cell Science

    The structural basis of intraflagellar transport at a glance

    The intraflagellar transport (IFT) system is a remarkable molecular machine used by cells to assemble and maintain the cilium, a long organelle extending from eukaryotic cells that gives rise to motility, sensing and signaling. IFT plays a critical role in building the cilium by shuttling structural components and signaling receptors between the ciliary base and […]

  • 05/2021 - Current Biology

    Intraflagellar transport

    Cells need to be able to sense different types of signals, such as chemical and mechanical stimuli, from the extracellular environment in order to properly function. Most eukaryotic cells sense these signals in part through a specialized hair-like organelle, the cilium, that extends from the cell body as a sort of antenna. The signaling and […]

  • 03/2021 - BioRxiv

    Intraflagellar transport trains can turn around without the ciliary tip complex

    Cilia and flagella are microtubule doublet based organelles found across the eukaryotic tree of life. Their very high aspect ratio and crowded interior are unfavourable to diffusive transport for their assembly and maintenance. Instead, a highly dynamic system of intraflagellar transport (IFT) trains moves rapidly up and down the cilium. However, the mechanism of how […]

  • 03/2021 - PLoS Genet

    Ccdc113/Ccdc96 complex, a novel regulator of ciliary beating that connects radial spoke 3 to dynein g and the nexin link

    Ciliary beating requires the coordinated activity of numerous axonemal complexes. The protein composition and role of radial spokes (RS), nexin links (N-DRC) and dyneins (ODAs and IDAs) is well established. However, how information is transmitted from the central apparatus to the RS and across other ciliary structures remains unclear. Here, we identify a complex comprising […]