
Gaia Pigino
- Associate Head of Structural Biology Research Centre, Structural biology
- Research Group Leader, Pigino Group
Gaia Pigino is a biologist, currently Associate Head of the Structural Biology Center at Human Technopole, after 9 years as Research Group Leader at the Max Planck Institute CBG in Dresden. She collaborate with Alessandro Vannini to develop the Centre for Structural Biology. Gaia’s laboratory studies molecular mechanisms and principles of self-organisation in cilia and other subcellular structures that are of fundamental importance for human health and disease.
CURRENT POSITION
Since 2021 | Associate Head of the Structural Biology Center at Human Technopole, Milan, Italy |
Since 2012 | Research Group Leader at MPI-CBG, the Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany |
POSTDOCTORAL RESEARCH
2010-2012 | Postdoctoral EMBO Long Term fellow Laboratory of Biomolecular Research (BMR), Department of Biology and Chemistry, Paul Scherer Institute (PSI) Switzerland. Supervisor: Prof. T. Ishikawa. |
2009-2011 | Postdoctoral researcher Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland. Supervisor: Prof. T. Ishikawa. |
2007-2009 | Postdoctoral MIUR research fellow Fellowship of the “Ministero Italiano dell’Istruzione, dell’Università e della Ricerca”. Laboratory of Cryotechniques for Electron Microscopy, Department of Evolutionary Biology, University of Siena. Supervisor: Prof. P. Lupetti. |
2009 | Participant at the Physiology Course at MBL in Woods Hole Marine Biological Laboratory, Woods Hole. Directors: Dyche Mullins and Claire Waterman. |
EDUCATION
2003-2007 | Ph.D. Student (Ph.D. Fellowship by the Italian government “Ministero Italiano dell’Istruzione, dell’Università e della Ricerca”). Department of Evolutionary Biology, University of Siena. Supervisor: Prof. F. Bernini and Prof. C. Leonzio. |
2002 | Diploma in Natural Science (Summa cum laude). University of Siena, Italy. Thesis supervisors: Prof. C. Leonzio and Prof. F. Bernini. |
OTHER POSITIONS
2003 | Research Associate. Department of Environmental Sciences G. Sarfatti, University of Siena. Advisor: Prof. C. Leonzio |
AWARDS and FUNDING
2022 | EMBO Member |
2019 | DFG Grant – GAČR-DFG Cooperation |
2018 | PoL starting fellowship (from the Dresden Excellence Cluster ‘Physics of Life’) |
2018 | Keith R. Porter Fellow Award for Cell Biology |
2018 | ERC Consolidator Grant (ERC-2018-COG N#819826 CiliaTubulinCode) |
2018 | Excellence Cluster ‘Physics of Life’, as a core Principal Investigator |
2010 | EMBO Long Term fellowship |
2009 | Scholarship from the Marine Biological Laboratory (Woods Hole, Massachusetts) MBL Physiology Course. |
2007 | Post-Doctoral Research fellowship from MIUR. |
2003 | Ph.D. Fellowship from MIUR. |
Fellowship to students and postdocs
2022 | EMBO Long Term Fellowship to Helen Foster |
2021 | EMBO Postdoc Fellowship to Nikolai Klena |
2019 | HFSP Postdoc Fellowship to Adrian Nievergelt |
2018 | EMBO Long Term Fellowship to Adrian Nievergelt |
2017 | Marie Curie Fellowship to Adam Schröfel (H2020-MSCA-IF-2016) |
2015 | DIGS-BB Fellowship to Guendalina Marini |
2012 | DIGS-BB Fellowship to Ludek Stepanek |
Google Scholar
Contacts
Follow on
Publications
-
03/2024 - STAR protocols
Protocol for precision editing of endogenous Chlamydomonas reinhardtii genes with CRISPR-Cas
CRISPR-Cas genome engineering in the unicellular green algal model Chlamydomonas reinhardtii has until recently suffered from low integration efficiencies despite traditional genetics being well established. Here, we present a protocol for efficient homology-directed knockin mutagenesis in all commonly used strains of Chlamydomonas. We describe steps for scarless integration of fusion tags and sequence modifications of almost all proteins […]
-
02/2024 - Biophysical Journal
Structure and dynamics of the cilium transport system by cryo-ET et al.
In this talk I will show how we combine EM and molecular cell biology methods to obtain a mechanistic understanding of the molecular machineries required for the assembly and the function of cilia/flagella: evolutionary conserved organelles with fundamental roles in human health and disease. Assembly of the cilium requires the rapid bidirectional transport (intraflagellar transport […]
-
01/2023 - Nature Structural & Molecular Biology
The molecular structure of IFT-A and IFT-B in anterograde intraflagellar transport trains
Anterograde intraflagellar transport (IFT) trains are essential for cilia assembly and maintenance. These trains are formed of 22 IFT-A and IFT-B proteins that link structural and signaling cargos to microtubule motors for import into cilia. It remains unknown how the IFT-A/-B proteins are arranged into complexes and how these complexes polymerize into functional trains. Here […]
-
11/2022 - eLife
Integrative modeling reveals the molecular architecture of the intraflagellar transport A (IFT-A) complex
Intraflagellar transport (IFT) is a conserved process of cargo transport in cilia that is essential for development and homeostasis in organisms ranging from algae to vertebrates. In humans, variants in genes encoding subunits of the cargo-adapting IFT-A and IFT-B protein complexes are a common cause of genetic diseases known as ciliopathies. While recent progress has […]
-
10/2022 - Annu Rev Cell Dev Biol
Structural Biology of Cilia and Intraflagellar Transport
Cilia are ubiquitous microtubule-based eukaryotic organelles that project from the cell to generate motility or function in cellular signaling. Motile cilia or flagella contain axonemal dynein motors and other complexes to achieve beating. Primary cilia are immotile and act as signaling hubs, with receptors shuttling between the cytoplasm and ciliary compartment. In both cilia types, […]