
Giuseppe Testa
- Head of Neurogenomics Research Centre, Neurogenomics
- Research Group Leader, Testa Group
Giuseppe Testa, MD, PHD, MA, is a professor of Molecular Biology at Milan’s Università Statale and Director of the High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics at the European Institute of Oncology. At Human Technopole he heads the Centre for Neurogenomics, within which his lab studies the mechanisms of intellectual disability and autism.
Contacts
Follow on
Publications
- 02/2022 - International Journal of Cancer
Integrated molecular profiling of patient-derived ovarian cancer models identifies clinically relevant signatures and tumor vulnerabilities
High-grade serous ovarian carcinoma (HGSOC) is a highly aggressive and intractable neoplasm, mainly because of its rapid dissemination into the abdominal cavity, a process that is favored by tumor-associated peritoneal ascites. The precise molecular alterations involved in HGSOC onset and progression remain largely unknown due to the high biological and genetic heterogeneity of this tumor. […]
- 11/2021 - Cell Death & Differentiation
Single cell-derived spheroids capture the self-renewing subpopulations of metastatic ovarian cancer
High Grade Serous Ovarian cancer (HGSOC) is a major unmet need in oncology, due to its precocious dissemination and the lack of meaningful human models for the investigation of disease pathogenesis in a patient-specific manner. To overcome this roadblock, we present a new method to isolate and grow single cells directly from patients’ metastatic ascites, […]
- 10/2021 - Frontiers in Cellular Neuroscience
Novel in vitro Experimental Approaches to Study Myelination and Remyelination in the Central Nervous System
Myelin is the lipidic insulating structure enwrapping axons and allowing fast saltatory nerve conduction. In the central nervous system, myelin sheath is the result of the complex packaging of multilamellar extensions of oligodendrocyte (OL) membranes. Before reaching myelinating capabilities, OLs undergo a very precise program of differentiation and maturation that starts from OL precursor cells […]
- 07/2021 - Autophagy
Imbalanced autophagy causes synaptic deficits in a human model for neurodevelopmental disorders
Macroautophagy (hereafter referred to as autophagy) is a finely tuned process of programmed degradation and recycling of proteins and cellular components, which is crucial in neuronal function and synaptic integrity. Mounting evidence implicates chromatin remodeling in fine-tuning autophagy pathways. However, this epigenetic regulation is poorly understood in neurons. Here, we investigate the role in autophagy […]
- 07/2021 - International Journal of Cancer
Exploiting epigenetic dependencies in ovarian cancer therapy
Ovarian cancer therapy has remained fundamentally unchanged for 50 years, with surgery and chemotherapy still the frontline treatments. Typically asymptomatic until advanced stages, ovarian cancer is known as “the silent killer.” Consequently, it has one of the worst 5-year survival rates, as low as 30%. The most frequent driver mutations are found in well-defined tumor suppressors, […]