
Nereo Kalebic
- Research Group Leader, Kalebic Group
Nereo Kalebic is a Group Leader at the Centre for Neurogenomics. He obtained his degree in Molecular Biology at the University of Zagreb in Croatia in 2007. In 2012 he completed his PhD in Molecular Biology at the European Molecular Biology Laboratory (EMBL) and the University of Heidelberg. During his PhD, Nereo studied the role of microtubule post-translational modifications in development and function of nervous system. From 2013 to 2019, he carried out post-doctoral research in the group of Wieland Huttner at the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden studying the development and evolution of human neocortex. Nereo’s current research focuses on molecular and cell biological mechanisms underlying human neocortex development and its implications for human evolution and neurodevelopmental disorders.
Contacts
Follow on
-
09/2022 - Science
Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals
INTRODUCTION The evolutionary expansion of the neocortex and the concomitant increase in neuron production are considered to be a basis for the increase in cognitive abilities that occurred during human evolution. Endocast analyses reveal that the endocranial volume of modern humans and Neanderthals was similar, suggesting similar brain and neocortex size. But whether similar neocortex […]
-
06/2022 - Frontiers in Cell and Developmental Biology
Forebrain Organoids to Model the Cell Biology of Basal Radial Glia in Neurodevelopmental Disorders and Brain Evolution
The acquisition of higher intellectual abilities that distinguish humans from their closest relatives correlates greatly with the expansion of the cerebral cortex. This expansion is a consequence of an increase in neuronal cell production driven by the higher proliferative capacity of neural progenitor cells, in particular basal radial glia (bRG). Furthermore, when the proliferation of […]
-
01/2022 - Frontiers in Neuroscience
Roots of the Malformations of Cortical Development in the Cell Biology of Neural Progenitor Cells
The cerebral cortex is a structure that underlies various brain functions, including cognition and language. Mammalian cerebral cortex starts developing during the embryonic period with the neural progenitor cells generating neurons. Newborn neurons migrate along progenitors’ radial processes from the site of their origin in the germinal zones to the cortical plate, where they mature […]
-
09/2021 - Development
Inheritance and flexibility of cell polarity: a clue for understanding human brain development and evolution
Cell polarity is fundamentally important for understanding brain development. Here, we hypothesize that the inheritance and flexibility of cell polarity during neocortex development could be implicated in neocortical evolutionary expansion. Molecular and morphological features of cell polarity may be inherited from one type of progenitor cell to the other and finally transmitted to neurons. Furthermore, […]
-
04/2021 - Frontiers
The Ferret as a Model System for Neocortex Development and Evolution
The neocortex is the largest part of the cerebral cortex and a key structure involved in human behavior and cognition. Comparison of neocortex development across mammals reveals that the proliferative capacity of neural stem and progenitor cells and the length of the neurogenic period are essential for regulating neocortex size and complexity, which in turn […]