03/2013 - Electron tomography of IFT particles
Cilia and flagella play very important roles in eukaryotic cells, ranging from cell motility to chemo- and mechanosensation with active involvement in embryonic development and control of cell division. Cilia and flagella are highly dynamic organelles undergoing constant turnover at their tip, where multiprotein precursors synthesized in the cell cytoplasm are assembled, turnover products are […]
09/2012 - A structural perspective on RNA polymerase I and RNA polymerase III transcription machineries
RNA polymerase I and III are responsible for the bulk of nuclear transcription in actively growing cells and their activity impacts the cellular biosynthetic capacity. As a consequence, RNA polymerase I and III deregulation has been directly linked to cancer development. The complexity of RNA polymerase I and III transcription apparatuses has hampered their structural […]
05/2012 - Rab5 is necessary for the biogenesis of the endolysosomal system in vivo
An outstanding question is how cells control the number and size of membrane organelles. The small GTPase Rab5 has been proposed to be a master regulator of endosome biogenesis. Here, to test this hypothesis, we developed a mathematical model of endosome dependency on Rab5 and validated it by titrating down all three Rab5 isoforms in […]
05/2012 - Comparative structural analysis of eukaryotic flagella and cilia from Chlamydomonas, Tetrahymena, and sea urchins
Although eukaryotic flagella and cilia all share the basic 9 + 2 microtubule-organization of their internal axonemes, and are capable of generating bending-motion, the waveforms, amplitudes, and velocities of the bending-motions are quite diverse. To explore the structural basis of this functional diversity of flagella and cilia, we here compare the axonemal structure of three different organisms with […]