Understanding the origin of human brain evolution and the underlying molecular mechanisms is made challenging by the complexity of the brain itself and ethical barriers to the use of human samples. The Kalebic team discusses how human forebrain organoids can be exploited to study human brain evolution and neurodevelopmental pathologies.
Human brain evolution has been linked to an increase in brain size and, in particular, to the expansion of the neocortex, a specialised brain region that controls higher cognitive functions such as conscious decision-making and language. The expansion of the neocortex is the result of an increased production of neuronal cells from neural progenitor cells named basal radial glia (bRG). Impaired proliferation of bRG impacts on neuronal cells and leads to the onset of neurodevelopmental disorders.
Flaminia Kaluthantrige Don and Nereo Kalebic at the HT Neurogenomics Research Centre review current research on cerebral organoids – miniature organ-like 3D structures grown from cultured pluripotent stem cells and recapitulating the key features of human brain – as a tool to investigate human brain development in vitro, thus overcoming the limitations to the access and availability of human brain specimens. The researchers discuss how forebrain organoids have been instrumental to shed light on molecular and cellular features of the bRG, and how deregulation of vital signalling pathways in bRG is involved in the onset of various neurodevelopmental diseases.
The image shows neural progenitor cells (green) lining a ventricle of a day 76 brain organoid. A subpopulation of these progenitors, called basal radial glia (bRG), marked by a bRG marker (magenta), have their proliferating niche further away from the ventricle.
An international collaborative study led by Human Technopole, Candiolo Cancer Institute IRCCS in Turin, the University of Turin, and the Wellcome Sanger Institute in Cambridge (UK) has identified new factors associated with therapeutic response in colorectal cancer. The research has led to the development of a machine-learning model capable of accurately predicting the effects of cetuximab, a drug in clinical use, on different colorectal tumour subtypes. Funded by the AIRC Foundation, the study paves the way to identifying molecular features that could serve as biomarkers for predicting treatment response in patients with this type of cancer.
The Human Technopole Director, Marino Zerial, has been awarded the 2024 Mercurio Prize in the “Research and Development” category, in recognition of the excellence of his research in the field of cell biology. Zerial, renowned for his studies on the mechanisms of endocytosis and cellular transport, has made significant contributions to the understanding of cellular dynamics, with potential therapeutic applications for diseases such as liver conditions.
Researchers from Human Technopole, the Institute of Molecular Biotechnology and Bicocca University established a method for developing brain assembloids that allows reproducing salient aspects of the antero-posterior polarity of the human cerebral cortex in vitro and opens new possibilities for disease modelling. The study is published in Nature Methods.
Meet Clelia Peano, Head of the National Facility for Genomics. The Facility offers cutting-edge services to develop robust experimental and analytical workflows to explore different genomic research areas, including DNA and RNA analysis, chromatin structure, and epigenetic mechanisms regulating transcription. The goal is to enhance genomic research in all its aspects, benefiting the entire Italian scientific community.
Manage Cookie Consent
This website uses technical cookies to provide you with a better browsing experience and, subject to your consent, profiling cookies to offer you information and advertising in line with your preferences. For more details, you can consult our cookie policy by clicking on the link below, or set your preferences by clicking "set preferences". By selecting "accept cookies" you consent to the use of all types of cookies while you can revoke your consent by clicking on "refuse". By deciding to refuse or closing the banner, only the technical cookies necessary for the correct functioning of the site will be activated.
Technical cookies (required)
Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Third party cookies for statistics
The technical storage or access that is used exclusively for statistical purposes.The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Third party cookies for profiling
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.