10/2020 - Project Score database: a resource for investigating cancer cell dependencies and prioritizing therapeutic targets

CRISPR genetic screens in cancer cell models are a powerful tool to elucidate oncogenic mechanisms and to identify promising therapeutic targets. The Project Score database (https://score.depmap.sanger.ac.uk/) uses genome-wide CRISPR–Cas9 dropout screening data in hundreds of highly annotated cancer cell models to identify genes required for cell fitness and prioritize novel oncology targets. The Project Score […]

Read more

10/2020 - JMJD3 acts in tandem with KLF4 to facilitate reprogramming to pluripotency

The interplay between the Yamanaka factors (OCT4, SOX2, KLF4 and c-MYC) and transcriptional/epigenetic co-regulators in somatic cell reprogramming is incompletely understood. Here, we demonstrate that the histone H3 lysine 27 trimethylation (H3K27me3) demethylase JMJD3 plays conflicting roles in mouse reprogramming. On one side, JMJD3 induces the pro-senescence factor Ink4a and degrades the pluripotency regulator PHF20 in a […]

Read more

10/2020 - Condensin complexes: understanding loop extrusion one conformational change at a time

Condensin and cohesin, both members of the structural maintenance of chromosome (SMC) family, contribute to the regulation and structure of chromatin. Recent work has shown both condensin and cohesin extrude DNA loops and most likely work via a conserved mechanism. This review focuses on condensin complexes, highlighting recent in vitro work characterising DNA loop formation and protein […]

Read more

10/2020 - Evolutionary dynamics of neoantigens in growing tumors

Cancers accumulate mutations that lead to neoantigens, novel peptides that elicit an immune response, and consequently undergo evolutionary selection. Here we establish how negative selection shapes the clonality of neoantigens in a growing cancer by constructing a mathematical model of neoantigen evolution. The model predicts that, without immune escape, tumor neoantigens are either clonal or […]

Read more

09/2020 - The molecular structure of mammalian primary cilia revealed by cryo-electron tomography

Primary cilia are microtubule-based organelles that are important for signaling and sensing in eukaryotic cells. Unlike the thoroughly studied motile cilia, the three-dimensional architecture and molecular composition of primary cilia are largely unexplored. Yet, studying these aspects is necessary to understand how primary cilia function in health and disease. We developed an enabling method for […]

Read more