Oliver Harschnitz

Oliver Harschnitz è un Group Leader al Centro di Ricerca per la Neurogenomica di Human Technopole. Il suo gruppo di ricerca studia lo sviluppo e le applicazioni di un’ampia gamma di modelli di cellule staminali umane pluripotenti e all’avanguardia per comprendere meglio i meccanismi molecolari alla base dell’encefalite virale e autoimmune e per identificare i driver dell’infiammazione cronica nel cervello. In qualità di clinico-scienziato, la sua ricerca è finalizzata alla ricerca di target terapeutici che possano essere utilizzati direttamente in pazienti affetti da patologie neuro-immunologiche.

Oliver ha ottenuto la laurea in medicina dall’Università di Maastricht (Paesi Bassi) nel 2009 e ha completato il suo PhD nei gruppi di Leonard van den Berg e Jeroen Pasterkamp presso lo Utrecht Medical Centre (Paesi Bassi) nel 2017, mentre acquisiva anche esperienza clinica in neurologia. Durante il suo dottorato, Oliver ha sviluppato modelli di cellule staminali umane pluripotenti per studiare neuropatie infiammatorie e malattie dei motoneuroni. Dal 2017 al 2021 ha continuato la sua ricerca post-dottorato nel laboratorio di Lorenz Studer allo Sloan Kettering Institute (USA) studiando le interazioni ospite-virus nel sistema nervoso centrale utilizzando modelli di cellule staminali pluripotenti umane e schermi genetici in avanti.

Borse di studio e premi

2021: Warren Alpert Distinguished Scholars Fellowship

2020: NYSTEM Postdoctoral Training Award

2020: Brain Behavior Research Foundation NARSAD Young Investigator Award

2018: Best poster presentation at MSKCC Postdoc Research Symposium

2018: Brain Center Rudolf Magnus Biannual Award for Best Thesis

2017: Best presentation at Annual BRCM PhD Symposium

2014: Best presentation at Dutch Neurology Society Scientific Meeting

2014: Arthur K. Asbury Award at Peripheral Nerve Society Scientific Meeting

 

Lista completa di pubblicazioni 

Segui

  • Twitter

Pubblicazioni

  • 01/2021 - Nature Reviews Immunology

    Human stem cell models to study host–virus interactions in the central nervous system

    Advancements in human pluripotent stem cell technology offer a unique opportunity for the neuroimmunology field to study host–virus interactions directly in disease-relevant cells of the human central nervous system (CNS). Viral encephalitis is most commonly caused by herpesviruses, arboviruses and enteroviruses targeting distinct CNS cell types and often leading to severe neurological damage with poor […]

  • 11/2020 - Journal of Clinical Investigation

    TLR3 controls constitutive IFN-β antiviral immunity in human fibroblasts and cortical neurons

    Human herpes simplex virus 1 (HSV-1) encephalitis can be caused by inborn errors of the TLR3 pathway, resulting in impairment of CNS cell-intrinsic antiviral immunity. Deficiencies of the TLR3 pathway impair cell-intrinsic immunity to vesicular stomatitis virus (VSV) and HSV-1 in fibroblasts, and to HSV-1 in cortical but not trigeminal neurons. The underlying molecular mechanism […]

  • 07/2020 - Cell Stem Cell

    A Human Pluripotent Stem Cell-based Platform to Study SARS-CoV-2 Tropism and Model Virus Infection in Human Cells and Organoids

    SARS-CoV-2 has caused the COVID-19 pandemic. There is an urgent need for physiological models to study SARS-CoV-2 infection using human disease-relevant cells. COVID-19 pathophysiology includes respiratory failure but involves other organ systems including gut, liver, heart, and pancreas. We present an experimental platform comprised of cell and organoid derivatives from human pluripotent stem cells (hPSCs). […]

  • 12/2019 - Nature Medicine

    Human SNORA31 variations impair cortical neuron-intrinsic immunity to HSV-1 and underlie herpes simplex encephalitis

    Herpes simplex virus-1 (HSV-1) encephalitis (HSE) is typically sporadic. Inborn errors of TLR3- and DBR1-mediated central nervous system cell-intrinsic immunity can account for forebrain and brainstem HSE, respectively. We report five unrelated patients with forebrain HSE, each heterozygous for one of four rare variants of SNORA31, encoding a small nucleolar RNA of the H/ACA class that […]

  • 10/2018 - Nature Communications

    Microglia innately develop within cerebral organoids

    Cerebral organoids are 3D stem cell-derived models that can be utilized to study the human brain. The current consensus is that cerebral organoids consist of cells derived from the neuroectodermal lineage. This limits their value and applicability, as mesodermal-derived microglia are important players in neural development and disease. Remarkably, here we show that microglia can […]