Pigino Lab
Biologia Strutturale

Pigino Group

Le ciglia sono organelli simili a capelli che si estendono dalla superficie di quasi tutti i tipi di cellule polarizzate del corpo umano. Sono cruciali per varie funzioni motili e sensoriali durante lo sviluppo, la morfogenesi e l’omeostasi. Le ciglia sensoriali agiscono come antenne cellulari, rilevando segnali ambientali e morfogenici. Le ciglia mobili, invece, vengono utilizzate per spingere le cellule stesse o per spostare i fluidi sugli epiteli (ad esempio nei nostri polmoni). I disturbi correlati alle ciglia (noti come ciliopatie) colpiscono molti tessuti e organi in vari modi.

La disfunzione ciliare è la causa di un numero crescente di malattie di un singolo organo e forme sindromiche complesse tra cui idrocefalo, infertilità, malattie delle vie aeree, malattie policistiche del rene, fegato o pancreas, nonché malattie della retina e difetti dell’udito e dell’olfatto.

Il Pigino Group indaga la struttura 3D dei componenti molecolari delle ciglia nel loro contesto cellulare nativo e in isolamento, cercando di capire come orchestrano le funzioni specifiche delle ciglia. Il nostro lavoro si posiziona tipicamente proprio nell’interfaccia tra biologia strutturale e biologia cellulare molecolare. Combiniamo quindi gli strumenti e le metodologie più recenti di entrambi i campi, dalla tomografia crioelettronica, alla microscopia a luce e fluorescenza correlativa (CLEM), ai sistemi dinamici ricostituiti in vitro, alla genetica, alla biochimica, ai metodi di analisi delle immagini, fino alla biologia cellulare più classica.

L’obiettivo finale del Pigino Group è comprendere le cause molecolari alla base della funzione e della disfunzione ciliare, in modo che possano essere sviluppate possibili strategie terapeutiche per le ciliopatie.

Membri del gruppo

Pubblicazioni

  • 11/2021 - BioRxiv

    In situ architecture of the ciliary base reveals the stepwise assembly of IFT trains

    he transition zone, then as it extends into the cytosol, first the dynein-1b and then the IFTA densities are missing. This suggests the IFTB backbone is built first, followed by IFTA and then dynein-2 recruitment. Kinesin-2 is relatively small and flexible and so could not be identified by cryo-ET. Instead, the authors use expansion microscopy […]

  • 11/2021 - eLife

    A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia

    Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia and across the diffusion barrier is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence of WDR35, small mutant […]

  • 08/2021 - Journal of Cell Science

    In vivo imaging shows continued association of several IFT A, B and dynein complexes while IFT trains U-turn at the tip

    Flagellar assembly depends on intraflagellar transport (IFT), a bidirectional motility of protein carriers, the IFT trains. The trains are periodic assemblies of IFT-A and IFT-B subcomplexes and the motors kinesin-2 and IFT dynein. At the tip, anterograde trains are remodeled for retrograde IFT, a process that in Chlamydomonas involves kinesin-2 release and train fragmentation. However, […]

  • 06/2021 - Journal of Cell Science

    The structural basis of intraflagellar transport at a glance

    The intraflagellar transport (IFT) system is a remarkable molecular machine used by cells to assemble and maintain the cilium, a long organelle extending from eukaryotic cells that gives rise to motility, sensing and signaling. IFT plays a critical role in building the cilium by shuttling structural components and signaling receptors between the ciliary base and […]

  • 05/2021 - Current Biology

    Intraflagellar transport

    Cells need to be able to sense different types of signals, such as chemical and mechanical stimuli, from the extracellular environment in order to properly function. Most eukaryotic cells sense these signals in part through a specialized hair-like organelle, the cilium, that extends from the cell body as a sort of antenna. The signaling and […]