
Iorio Group
Iorio group’s Apps, Tools and Computable Manuscripts
Lo Iorio Group lavora tra biologia, machine learning, statistica e teoria dell’informazione con l’obiettivo di comprendere e prevedere il ruolo delle alterazioni genomiche e dei tratti molecolari derivanti da altre -omiche nei processi patologici, nel ri-cablaggio dei circuiti biologici e il loro impatto sulla risposta terapeutica nei tumori umani e in altre malattie.
La nostra ricerca mira a migliorare la salute umana sviluppando algoritmi, strumenti di calcolo e nuovi metodi analitici per l’integrazione e l’analisi di set di dati di farmacogenomica e genomica funzionale, con l’obiettivo di identificare nuovi target terapeutici, biomarcatori e opportunità per il riposizionamento dei farmaci.
Con i nostri collaboratori, stiamo contribuendo alla creazione di una mappa completa di tutte le dipendenze genetiche e le vulnerabilità dei tumori umani e allo sviluppo di un’infrastruttura computazionale per tradurre questa mappa in linee guida per le fasi iniziali dello sviluppo di farmaci e per la medicina di precisione.
Sviluppiamo, implementiamo e gestiamo metodi bioinformatici e nuovi strumenti per la valutazione di modelli preclinici, la pre-elaborazione, l’analisi e la visualizzazione di dati provenienti da screening di genome-editing, per la correzione in silico di bias specifici in tali dati e per l’ottimizzazione di librerie di RNA a guida singola per screenings CRISPR-Cas9 aggregati e altri setting sperimentali.
Il nostro interesse è anche rivolto all’analisi di big-data, allo sviluppo di modelli predittivi biomedici basati su dati non biomedici, e a strategie informatiche efficienti per la randomizzazione vincolata utile a testare proprietà combinatorie in reti biologiche e dati genomici su larga scala.
Membri del gruppo
-
Francesco Iorio
Research Group Leader -
Lorenzo Mathieu Brochier
PhD Student -
Ottavio Croci
Senior Data Scientist -
Riccardo Roberto De Lucia
Software and Web Developer -
Alessandro Digilio
Undergraduate Intern -
Irene Fernandez Rebollo
Undergraduate Intern -
Raffaele Iannuzzi
PhD Student -
Athanasios Oikonomou
Research Fellow -
Flavio Passante
PhD Student -
Aurora Savino
Postdoc -
Yasin Tepeli
Scientific Visitor -
Lucia Trastulla
Postdoc -
Alessandro Vinceti
PhD Student
Pubblicazioni
-
11/2023 - Cell Reports Medicine
RAGE engagement by SARS-CoV-2 enables monocyte infection and underlies COVID-19 severity
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has fueled the COVID-19 pandemic with its enduring medical and socioeconomic challenges because of subsequent waves and long-term consequences of great concern. Here, we chart the molecular basis of COVID-19 pathogenesis by analyzing patients’ immune responses at single-cell resolution across disease course and severity. This […]
-
07/2023 - Febs Letters
Highlights from the 1st European cancer dependency map symposium and workshop
The systematic identification of tumour vulnerabilities through perturbational experiments on cancer models, including genome editing and drug screens, is playing a crucial role in combating cancer. This collective effort is known as the Cancer Dependency Map (DepMap). The 1st European Cancer Dependency Map Symposium (EuroDepMap), held in Milan last May, featured talks, a roundtable discussion, and a poster […]
-
01/2023 - Bioinformatics
A heuristic algorithm solving the mutual-exclusivity sorting problem
Motivation Binary (or boolean) matrices provide a common effective data representation adopted in several domains of computational biology, especially for investigating cancer and other human diseases. For instance, they are used to summarise genetic aberrations—copy number alterations or mutations—observed in cancer patient cohorts, effectively highlighting combinatorial relations among them. One of these is the tendency […]
-
01/2023 - Cell Reports Methods
An interactive web application for processing, correcting, and visualizing genome-wide pooled CRISPR-Cas9 screens
A limitation of pooled CRISPR-Cas9 screens is the high false-positive rate in detecting essential genes arising from copy-number-amplified genomics regions. To solve this issue, we previously developed CRISPRcleanR: a computational method implemented as R/python package and in a dockerized version. CRISPRcleanR detects and corrects biased responses to CRISPR-Cas9 targeting in an unsupervised fashion, accurately reducing […]
-
10/2022 - Nature
Phenotypic plasticity and genetic control in colorectal cancer evolution
Genetic and epigenetic variation, together with transcriptional plasticity, contribute to intratumour heterogeneity1. The interplay of these biological processes and their respective contributions to tumour evolution remain unknown. Here we show that intratumour genetic ancestry only infrequently affects gene expression traits and subclonal evolution in colorectal cancer (CRC). Using spatially resolved paired whole-genome and transcriptome sequencing, […]