Gaia Pigino

Gaia Pigino

Gaia Pigino è Associate Head del Centro di Biologia Strutturale di Human Technopole.
È, inoltre, responsabile di un gruppo di ricerca al Max Planck Institute of Molecular Cell Biology and Genetics a Dresda, in Germania.

Nata a Siena nel 1976, si è laureata in scienze naturali all’Università di Siena nel 2002. Dopo essere stata research associate nel dipartimento di scienze ambientali dell’Università di Siena nel 2003, ha svolto un dottorato nel Dipartimento di biologia evolutiva dell’Ateneo senese, conseguito nel 2007.

Dal 2007 al 2009 è stata assegnista di ricerca post-dottorato (vincendo un bando del Ministero Italiano dell’Istruzione, dell’Università e della Ricerca – MIUR) presso il laboratorio Cryotechniques for Electron Microscopy dell’Università di Siena.
Nel 2009 ha seguito il prestigioso corso di Fisiologia al Marine Biological Laboratory (MBL) a Woods Hole (Massachusetts, USA) per poi svolgere, dal 2009 al 2011, attività di ricerca post-dottorato al Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology (ETH) di Zurigo. Dopo aver vinto una post-doctoral fellowship dell’European Molecular Biology Organization (EMBO), ha iniziato le sue attività di ricerca presso il Biology and Chemistry Department del Paul Scherer Institute (PSI) in Svizzera.

Dal 2012 è responsabile di un gruppo di ricerca nonchè faculty member del Max Planck Institute of Molecular Cell Biology di Dresda.

Dal 2013 svolge attività di insegnamento in qualità di lecturer a studenti master e dottorandi del Max Planck Institute e della Technical University di Dresda.

Negli ultimi quattro anni ha partecipato a più di 40 tra congressi, conferenze, seminari e forum scientifici internazionali in qualità di conference chair o speaker.

Ha conseguito riconoscimenti e fondi per la ricerca a livello internazionale, tra i quali il Keith R. Porter Fellow Award per la Biologia Cellulare nel 2018, un European Research Council (ERC) Consolidator grant nel 2018 e un German Research Foundation (DFG) grant nel 2019.

È autrice di oltre 30 studi pubblicati su prestigiose riviste scientifiche internazionali, per molti dei quali è anche corresponding author. Tra gli articoli consigliati su F1000Prime/FacultyOpinions, il servizio che raccomanda le migliori pubblicazioni nei campi della biologia e della medicina attraverso i giudizi dei più influenti studiosi a livello mondiale, figurano ad esempio: “The molecular structure of mammalian primary cilia revealed by cryo-electron tomography” (Nature Structural Molecular Biology, 2020. “The Cryo-EM structure of Intraflagellar Transport Trains reveals how its motors avoid engaging in a tug-of-war” (Nature Cell Biology, 2018), “Microtubule doublets are double-track railways for intraflagellar transport trains” (Science, 2016), “Cryoelectron tomography of radial spokes in cilia and flagella” (The Journal of Cell Biology, 2011) e “Electron-tomographic analysis of intraflagellar transport particle trains in situ” (The Journal of Cell Biology, 2009).

Attività di ricerca

Nel Centro di biologia strutturale di Human Technopole, Gaia Pigino studierà i meccanismi molecolari necessari per l’assemblaggio e il funzionamento del ciglio, un organello presente nelle cellule eucariote di fondamentale importanza per la salute dell’umano in quanto la sua attività è legata all’insorgenza di numerose patologie, collettivamente definite ciliopatie. Gaia Pigino si occuperà di studiare i meccanismi molecolari e la funzione del ciglio indagando la struttura 3D dei suoi componenti.
Il lavoro di ricerca del suo team si posiziona nell’interfaccia tra biologia strutturale e biologia cellulare molecolare e vedrà l’utilizzo degli strumenti e metodologie più recenti in entrambi i campi: dalla crio-tomografia crioelettronica, alla microscopia a fluorescenza correlativa (CLEM), ai sistemi dinamici ricostituiti in vitro, alla genetica, alla biochimica, fino alla biologia cellulare più classica.

Email: gaia.pigino[at]fht.org

Segui

  • Twitter

Pubblicazioni

  • 07/2019 - Methods in Cell Biology

    Content-aware image restoration for electron microscopy

    Multiple approaches to use deep neural networks for image restoration have recently been proposed. Training such networks requires well registered pairs of high and low-quality images. While this is easily achievable for many imaging modalities, e.g., fluorescence light microscopy, for others it is not. Here we summarize on a number of recent developments in the […]

  • 06/2019 - Methods in Cell Biology

    Yeast membraneless compartments revealed by correlative light microscopy and electron tomography

    Yeast essential enzymes are able to assemble and form membrane-less compartments in the cytoplasm during stress conditions (Narayanaswamy et al., 2009). These microcompartments form rapidly under ATP-depletion upon cellular regulation of pH and molecular crowding (Munder et al., 2016). So far, the behavior of most of these enzymes has been characterized by live imaging using fluorescence […]

  • 05/2019 - Methods in Cell Biology

    In situ cryo-electron tomography and subtomogram averaging of intraflagellar transport trains

    In situ cryo-electron tomography (cryo-ET) and subtomogram averaging are powerful tools, able to provide 3D structures of biological samples at sub-nanometer resolution, while preserving information about cellular context and higher-order assembly. Best results are typically achieved, when applied to highly repetitive structures, such as viruses. Other typical examples are protein complexes that decorate long stretches along ciliary microtubules at […]

  • 11/2018 - Nature Cell Biology

    The cryo-EM structure of intraflagellar transport trains reveals how dynein is inactivated to ensure unidirectional anterograde movement in cilia

    Movement of cargos along microtubules plays key roles in diverse cellular processes, from signalling to mitosis. In cilia, rapid movement of ciliary components along the microtubules to and from the assembly site is essential for the assembly and disassembly of the structure itself1. This bidirectional transport, known as intraflagellar transport (IFT)2, is driven by the […]

  • 10/2018 - ArXiv

    Cryo-CARE: Content-Aware Image Restoration for Cryo-Transmission Electron Microscopy Data

    Multiple approaches to use deep learning for image restoration have recently been proposed. Training such approaches requires well registered pairs of high and low quality images. While this is easily achievable for many imaging modalities, e.g. fluorescence light microscopy, for others it is not. Cryo-transmission electron microscopy (cryo-TEM) could profoundly benefit from improved denoising methods, […]