Salta al contenuto

Subclonal reconstruction of tumors by using machine learning and population genetics

Human Technopole
Home Microscopio
  • Facebook
  • Twitter
  • Bluesky
  • Instagram
  • LinkedIn
  • YouTube
  • Flickr
EN / IT
  • HOME
  • Chi siamo
    • La nostra missione
    • Governance
  • News & outreach
  • Lavora con noi
  • People
  • Ricerca
    • Gruppi
      • TUTTI I GRUPPI
      • Genomica
        • Bienko Group
        • Calviello Group
        • Carninci Group
        • Domínguez Conde Group
        • Giustacchini Group
        • Glastonbury Group
        • Legnini Group
        • Soranzo Group
        • Soskic Group
      • Neurogenomica
        • Davila-Velderrain Group
        • Harschnitz Group
        • Kalebic Group
        • Taverna Group
        • Testa Group
      • Biologia Strutturale
        • Casañal Group
        • Coscia Group
        • Erdmann Group
        • Pigino Group
        • Vannini Group
      • Biologia Computazionale
        • Iorio Group
        • Jug Group
        • Pinheiro Group
        • Sottoriva Group
      • Health Data Science
        • Di Angelantonio & Ieva Group
        • Zuccolo Group
      • Biologia Cellulare Molecolare
        • Zerial Group
      • Modellazione e simulazione biofisica
    • Flagship Programmes
      • Malattie cardiovascolari e metaboliche
      • IA multimodale su più scale
      • Immunogenomica, Cancro e Infezioni
      • Condizioni del neurosviluppo e neuropsichiatriche
      • Ciliopatie
    • Collaborazioni
  • Infrastruttura
    • Piattaforme Nazionali
      • Tutte le piattaforme nazionali
      • Genomica
      • Editing Genomico e Modelli di Malattia
      • Biologia Strutturale
      • Microscopia Ottica
      • Gestione e Analisi dei Dati
  • Formazione
    • Formazione esterna
    • Formazione interna
  • Tech Transfer
    • Centro per l’Innovazione e il Trasferimento Tecnologico
  • Scegli lo sfondo chiaroScegli lo sfondo scuro
  • English version
  • Sfondo
  • Home
  • Pubblicazioni
  • Subclonal reconstruction of tumors by using machine learning and population genetics
09/2020 - Nature Genetics

Subclonal reconstruction of tumors by using machine learning and population genetics

Autori:

  • Giulio Caravagna, Timon Heide, Marc J. Williams, Luis Zapata, Daniel Nichol, Ketevan Chkhaidze, William Cross, George D. Cresswell, Benjamin Werner, Ahmet Acar, Louis Chesler, Chris P. Barnes, Guido Sanguinetti, Trevor A. Graham,
  • Sottoriva A.

Sommario:

Most cancer genomic data are generated from bulk samples composed of mixtures of cancer subpopulations, as well as normal cells. Subclonal reconstruction methods based on machine learning aim to separate those subpopulations in a sample and infer their evolutionary history. However, current approaches are entirely data driven and agnostic to evolutionary theory. We demonstrate that systematic errors occur in the analysis if evolution is not accounted for, and this is exacerbated with multi-sampling of the same tumor. We present a novel approach for model-based tumor subclonal reconstruction, called MOBSTER, which combines machine learning with theoretical population genetics. Using public whole-genome sequencing data from 2,606 samples from different cohorts, new data and synthetic validation, we show that this method is more robust and accurate than current techniques in single-sample, multiregion and longitudinal data. This approach minimizes the confounding factors of nonevolutionary methods, thus leading to more accurate recovery of the evolutionary history of human cancers.

  • Facebook
  • Twitter
  • LinkedIn
  • Email

Link:

  • Link
  • Come Raggiungerci
  • Area stampa
  • Newsletter
    • Facebook
    • Twitter
    • Bluesky
    • Instagram
    • LinkedIn
    • YouTube
    • Flickr
    • Amministrazione Trasparente
    • Bandi
    • Whistleblowing
    • HT Intranet
    • Privacy
    • Cookie Policy
    • Social Media Policy
    • Gestisci i Cookie
    Human Technopole
    Fondazione Human Technopole - Viale Rita Levi-Montalcini, 1 - Area MIND – Cargo 6 - 20157 Milano Italy - C.F. 97821360159 - PEC: [email protected]
    Manage Cookie Consent
    Questo sito utilizza cookie tecnici per fornirle un’esperienza di navigazione migliore e, previo suo consenso, cookie di profilazione per proporle informazioni e pubblicità in linea con le sue preferenze. Per maggiori dettagli può consultare la nostra cookie policy, cliccando sul link sottostante, o impostare le preferenze cliccando “configura preferenze”. Selezionando “accetta i cookie” presta il consenso all’uso di tutti i tipi di cookie mentre può revocare il consenso cliccando su “rifiuta”. Decidendo di rifiutare o chiudendo il banner saranno attivati i soli cookie tecnici necessari al corretto funzionamento del sito.
    Cookie tecnici (necessari) Sempre attivo
    The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
    Preferences
    The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
    Cookie di terze parti per statistiche
    The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
    Cookie di terze parti per profilazione
    The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
    Gestisci opzioni Gestisci servizi Gestisci {vendor_count} fornitori Per saperne di più su questi scopi
    Configura preferenze
    {title} {title} {title}