Gaia Pigino

Gaia Pigino

Gaia Pigino is a biologist, currently Associate Head of the Structural Biology Center at Human Technopole, after 9 years as Research Group Leader at the Max Planck Institute CBG in Dresden. She collaborate with Alessandro Vannini to develop the Centre for Structural Biology. Gaia’s laboratory studies molecular mechanisms and principles of self-organisation in cilia and other subcellular structures that are of fundamental importance for human health and disease.

CURRENT POSITION

Since 2021 Associate Head of the Structural Biology Center at Human Technopole, Milan, Italy
Since 2012 Research Group Leader at MPI-CBG, the Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany

POSTDOCTORAL RESEARCH

2010-2012 Postdoctoral EMBO Long Term fellow Laboratory of Biomolecular Research (BMR), Department of Biology and Chemistry, Paul Scherer Institute (PSI) Switzerland. Supervisor: Prof. T. Ishikawa.
2009-2011 Postdoctoral researcher Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland. Supervisor: Prof. T. Ishikawa.
2007-2009 Postdoctoral MIUR research fellow Fellowship of the “Ministero Italiano dell’Istruzione, dell’Università e della Ricerca”. Laboratory of Cryotechniques for Electron Microscopy, Department of Evolutionary Biology, University of Siena. Supervisor: Prof. P. Lupetti.
2009 Participant at the Physiology Course at MBL in Woods Hole Marine Biological Laboratory, Woods Hole. Directors: Dyche Mullins and Claire Waterman.

EDUCATION

2003-2007 Ph.D. Student (Ph.D. Fellowship by the Italian government “Ministero Italiano dell’Istruzione, dell’Università e della Ricerca”). Department of Evolutionary Biology, University of Siena. Supervisor: Prof. F. Bernini and Prof. C. Leonzio.
2002 Diploma in Natural Science (Summa cum laude). University of Siena, Italy. Thesis supervisors: Prof. C. Leonzio and Prof. F. Bernini.

OTHER POSITIONS

2003 Research Associate. Department of Environmental Sciences G. Sarfatti, University of Siena. Advisor: Prof. C. Leonzio

AWARDS and FUNDING

2022 EMBO Member
2019 DFG Grant – GAČR-DFG Cooperation
2018 PoL starting fellowship (from the Dresden Excellence Cluster ‘Physics of Life’)
2018 Keith R. Porter Fellow Award for Cell Biology
2018 ERC Consolidator Grant (ERC-2018-COG N#819826 CiliaTubulinCode)
2018 Excellence Cluster ‘Physics of Life’, as a core Principal Investigator
2010 EMBO Long Term fellowship
2009 Scholarship from the Marine Biological Laboratory (Woods Hole, Massachusetts) MBL Physiology Course.
2007 Post-Doctoral Research fellowship from MIUR.
2003 Ph.D. Fellowship from MIUR.

Fellowship to students and postdocs

2022 EMBO Long Term Fellowship to Helen Foster
2021 EMBO Postdoc Fellowship to Nikolai Klena
2019 HFSP Postdoc Fellowship to Adrian Nievergelt
2018 EMBO Long Term Fellowship to Adrian Nievergelt
2017 Marie Curie Fellowship to Adam Schröfel (H2020-MSCA-IF-2016)
2015 DIGS-BB Fellowship to Guendalina Marini
2012 DIGS-BB Fellowship to Ludek Stepanek

Google Scholar

Follow on

  • Twitter

Publications

  • 11/2011 - Journal of Cell Biology

    Cryoelectron tomography of radial spokes in cilia and flagella

    Radial spokes (RSs) are ubiquitous components in the 9 + 2 axoneme thought to be mechanochemical transducers involved in local control of dynein-driven microtubule sliding. They are composed of >23 polypeptides, whose interactions and placement must be deciphered to understand RS function. In this paper, we show the detailed three-dimensional (3D) structure of RS in […]

  • 11/2010 - Journal of Synchrotron Radiation

    Three-dimensional structural analysis of eukaryotic flagella/cilia by electron cryo-tomography

    Electron cryo-tomography is a potential approach to analyzing the three-dimensional conformation of frozen hydrated biological macromolecules using electron microscopy. Since projections of each individual object illuminated from different orientations are merged, electron tomography is capable of structural analysis of such heterogeneous environments as in vivo or with polymorphism, although radiation damage and the missing wedge are severe […]

  • 10/2009 - Journal of Structural Biology

    Simultaneous alignment of dual-axis tilt series

    We present a strategy for the alignment of dual-axis tomographic series, based on reference points and simultaneous alignment of both series. Each series is first aligned individually, an affine transformation is determined to bring the two series in a unique reference system, and all experimental coordinates are combined in a single system of equations. In […]

  • 10/2009 - Journal of Cell Biology

    Electron-tomographic analysis of intraflagellar transport particle trains in situ

    Intraflagellar transport (IFT) is the bidirectional movement of multipolypeptide particles between the ciliary membrane and the axonemal microtubules, and is required for the assembly, maintenance, and sensory function of cilia and flagella. In this paper, we present the first high-resolution ultrastructural analysis of trains of flagellar IFT particles, using transmission electron microscopy and electron-tomographic analysis […]

  • 07/2007 - Journal of Structural Biology

    JUST (Java User Segmentation Tool) for semi-automatic segmentation of tomographic maps

    We are presenting a program for interactive segmentation of tomographic maps, based on objective criteria so as to yield reproducible results. The strategy starts with the automatic segmentation of the entire volume with the watershed algorithm in 3D. The watershed regions are clustered successively by supervised classification, allowing the segmentation of known organelles, such as membranes, […]