Di Angelantonio & Ieva Group
Nel Di Angelantonio & Ieva Group epidemiologi, statistici e data scientists lavorano insieme per colmare il vuoto nelle conoscenze tra genotipo e fenotipo andando a studiare vari livelli di dati molecolari per indagare lo stato di salute degli individui e della popolazione. Per raggiungere questo obiettivo, il Gruppo sviluppa studi innovativi che integrano i dati biomolecolari con i dati di cartelle cliniche, di imaging e di dispositivi medici portatili. Vengono utilizzati sia dati già esistenti (cartelle cliniche ospedaliere, prescrizioni mediche, studi di coorte) sia nuovi dati generati da studi di popolazione che vengono analizzati attraverso nuovi metodi analitici, integrando l’epidemiologia clinica con la ricerca sanitaria allo scopo di migliorare l’analisi e l’interpretazione dei dati.
Connettendo i dati molecolari con le cartelle cliniche, il Gruppo si pone l’obiettivo di generare progressi utili in biologia, eziologia delle malattie, previsione del rischio, diagnosi precoce e targeting terapeutico. I metodi sviluppati vedranno applicazione nella medicina personalizzata, con benefici sulla salute individuale dei pazienti, così come in studi di popolazione grazie all’uso di dati su larga scala, con importanti progressi in sanità pubblica, analisi di dati sanitari e sviluppo di politiche sanitarie mirate.
La ricerca del Gruppo si concentra sullo studio dei fattori di rischio che causano le malattie e per sviluppare modelli di previsione del rischio per lo sviluppo di malattie croniche usando diversi livelli di dati tra cui dati omici, genetici e da cartelle cliniche.
Membri del gruppo
-
Emanuele Di Angelantonio
Head of Health Data Science Centre -
Francesca Ieva
Associate Head of Research centre -
Laura Bondi
Postdoc -
Solène Cadiou
Postdoc -
Andrea Corbetta
PhD Student -
Nicole Fontana
PhD Student -
Andrea Lampis
PhD Student -
Katherine Marie Logan
PhD Student -
Alessia Mapelli
PhD Student -
Michela Carlotta Massi
Staff Scientist -
Lucia Piubeni
PhD Student -
Carlo Andrea Pivato
Scientific Visitor -
Laura Savarè
Postdoc -
Piercesare Secchi
Scientific Visitor -
Luca Trizio
Scientific Visitor -
Andrea Mario Vergani
PhD Student
Pubblicazioni
-
05/2022 - Acta Oncologica
Oligoscore: a clinical score to predict overall survival in patients with oligometastatic disease treated with stereotactic body radiotherapy
Background to find clinical features that can predict prognosis in patients with oligometastatic disease treated with stereotactic body radiotherapy (SBRT) Material and methods Patients with less than 5 metastases in less than 3 different body sites were included in the analysis. Various clinical and treatment parameters were analyzed to create a Cox proportional hazard model […]
-
01/2022 - International Conference on Learning Representations
A Deep Variational Approach to Clustering Survival Data
In this work, we study the problem of clustering survival data — a challenging and so far under-explored task. We introduce a novel semi-supervised probabilistic approach to cluster survival data by leveraging recent advances in stochastic gradient variational inference. In contrast to previous work, our proposed method employs a deep generative model to uncover the […]
-
12/2021 - BMJ Open
Novel longitudinal Multiple Overall Toxicity (MOTox) score to quantify adverse events experienced by patients during chemotherapy treatment: a retrospective analysis of the MRC BO06 trial in osteosarcoma
Objectives This study aims at exploring and quantifying multiple types of adverse events (AEs) experienced by patients during cancer treatment. A novel longitudinal score to evaluate the Multiple Overall Toxicity (MOTox) burden is proposed. The MOTox approach investigates the personalised evolution of high overall toxicity (high-MOTox) during the treatment. Design Retrospective analysis of the MRC-BO06/EORTC-80931 randomised controlled […]
-
12/2021 - Statistical analysis and data mining
Feature selection for imbalanced data with deep sparse autoencoders ensemble
Class imbalance is a common issue in many domain applications of learning algorithms. Oftentimes, in the same domains it is much more relevant to correctly classify and profile minority class observations. This need can be addressed by feature selection (FS), that offers several further advantages, such as decreasing computational costs, aiding inference and interpretability. However, […]
-
11/2021 - EJNMMI Research
[18F]FMCH PET/CT biomarkers and similarity analysis to refine the definition of oligometastatic prostate cancer
Background The role of image-derived biomarkers in recurrent oligometastatic Prostate Cancer (PCa) is unexplored. This paper aimed to evaluate [18F]FMCH PET/CT radiomic analysis in patients with recurrent PCa after primary radical therapy. Specifically, we tested intra-patient lesions similarity in oligometastatic and plurimetastatic PCa, comparing the two most used definitions of oligometastatic disease. Methods PCa patients […]