Francesco Iorio

Francesco ha conseguito un dottorato di ricerca in informatica presso l’Università di Salerno e il TeleThon Institute of Genetics and Medicine (TIGEM, Napoli – Italia), dove si è concentrato sui metodi computazionali per la scoperta e il riposizionamento di farmaci.

Successivamente, gli è stata assegnata una borsa di studio post-dottorato (ESPOD) in un programma congiunto tra l’EMBL – European Bioinformatics Institute (EBI) e il Wellcome Sanger Institute (WSI) per lavorare su approcci computazionali integrativi per la previsione e la dissezione della sensibilità ai farmaci nel cancro, a partire dall’analisi di dati provenienti da screening farmacologici in-vitro su larga scala.

Successivamente, in qualità di bioinformatico presso l’EBI, Francesco ha guidato l’analisi dei dati provenienti da uno screening a CRISPR-Cas9 su scala genomica eseguiti su centinaia di linee cellulari tumorali, con l’obiettivo di identificare letalità sintetiche nel cancro e identificare nuovi bersagli terapeutici.

Dal 2018 al 2020 ha guidato il team Cancer Dependency Map Analytics al WSI, fornendo supporto computazionale alla partnership Cancer Dependency Map: uno iniziativa internazionale che coinvolge il WSI e il Broad Institute di MIT e Harvard con l’obiettivo di identificare tutte le dipendenze genetiche e le vulnerabilità esistenti nelle cellule di cancro. In questo ruolo, ha guidato lo sviluppo di nuovi algoritmi e strumenti computazionali per l’analisi e l’integrazione di dati di farmacogenomica del cancro su larga scala e di genomica funzionale.

Dalla seconda metà del 2020 Francesco è capo gruppo di ricerca presso il Centro di Ricerca in Biologia Computazionale di Human Technopole (Milano, Italia) dove sta istituendo un programma di ricerca in Computational cancer Pharmacogenomics e Therapeutic Target Discovery.

Da novembre 2019 è Scientific Advisor per il centro congiunto Cancer Research Horizon – AstraZeneca per la Genomica Funzionale di Cambridge (UK).

Segui

  • Twitter

Pubblicazioni

  • 01/2021 - Nature Computational Science

    Redefining false discoveries in cancer data analyses

    The nature of biological networks still brings challenges related to computational complexity, interpretable results and statistical signifcance. Recent work proposes a new method that paves the way for addressing these issues when analyzing cancer genomic data.

  • 10/2020 - Nucleic Acid Research

    Project Score database: a resource for investigating cancer cell dependencies and prioritizing therapeutic targets

    CRISPR genetic screens in cancer cell models are a powerful tool to elucidate oncogenic mechanisms and to identify promising therapeutic targets. The Project Score database (https://score.depmap.sanger.ac.uk/) uses genome-wide CRISPR–Cas9 dropout screening data in hundreds of highly annotated cancer cell models to identify genes required for cell fitness and prioritize novel oncology targets. The Project Score […]

  • 08/2020 - Patterns

    Identification of Intrinsic Drug Resistance and Its Biomarkers in High-Throughput Pharmacogenomic and CRISPR Screens

    High-throughput drug screens in cancer cell lines test compounds at low concentrations, thereby enabling the identification of drug-sensitivity biomarkers, while resistance biomarkers remain underexplored. Dissecting meaningful drug responses at high concentrations is challenging due to cytotoxicity, i.e., off-target effects, thus limiting resistance biomarker discovery to frequently mutated cancer genes. To address this, we interrogate subpopulations […]

  • 08/2020 - Pigment Cell and Melanoma Research

    Analysis of CRISPR‐Cas9 screens identify genetic dependencies in melanoma

    Targeting the MAPK signaling pathway has transformed the treatment of metastatic melanoma. CRISPR‐Cas9 genetic screens provide a genome‐wide approach to uncover novel genetic dependencies that might serve as therapeutic targets. Here, we analyzed recently reported CRISPR‐Cas9 screens comparing data from 28 melanoma cell lines and 313 cell lines of other tumor types in order to […]

  • 07/2020 - Molecular Systems Biology

    Drug mechanism‐of‐action discovery through the integration of pharmacological and CRISPR screens

    Low success rates during drug development are due, in part, to the difficulty of defining drug mechanism‐of‐action and molecular markers of therapeutic activity. Here, we integrated 199,219 drug sensitivity measurements for 397 unique anti‐cancer drugs with genome‐wide CRISPR loss‐of‐function screens in 484 cell lines to systematically investigate cellular drug mechanism‐of‐action. We observed an enrichment for […]